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Abstra
t

The weight of a 
ode is the number of 
oordinate positions where

no 
odeword is zero. The rth minimum weight dr is the least weight

of any r-dimensional sub
ode. Wei and Yang gave a 
onje
ture about

the minimum weights for some produ
t 
odes. In this paper we will

�nd a relation between produ
t 
odes and the Segre embedding of a

pair of proje
tive systems, and we use this to prove the 
onje
ture.
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1 Introdu
tion

An [n, k] 
ode is a k-dimensional subspa
e C ⊆ V of some n-dimensional

ve
tor spa
e V. It 
an be de�ned by a k × n matrix G, 
alled the generator

matrix. The message spa
e M is a k-dimensional ve
tor spa
e, and G gives

a linear transformation M→ V.

The rows of G is a basis for C. The 
olumns 
an be viewed as linear forms,

i.e. ve
tors inM

∗
, the dual spa
e ofM. This means that if a = (a1, . . . ak) is

the rth 
olumn in G, then a = a1x1 + . . .+akxk is a linear form. If m ∈M is

a message word, then a(m) is the rth 
oordinate in the 
orresponding 
ode

word.

We 
an now see that a linear 
ode may be des
ribed by either a basis

or a system of linear forms. By a system we will in this paper mean a


olle
tion with possible repetition of elements. Codes are 
onsidered to be

equivalent if one 
an be obtained from the other by permuting 
oordinate

positions, multiplying 
ertain 
oordinates by a non-zero s
alar, or deleting

zero positions. This 
orresponds to reordering the ve
tor system, repla
ing

linear forms by proportional forms, and deleting zero forms. We 
on
lude

that the linear forms may be represented by proje
tive points, and in this


ase we talk about a proje
tive system (or proje
tive multiset [3℄) rather

than a ve
tor system.

Given a proje
tive system X ⊆ P

k−1
, the value ν(x) of x ∈ Pk−1

is

the number of o

urren
es of x in X. This gives a map ν : P

k−1 →
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{0, 1, 2, . . .}, 
alled the value assignment des
ribing X. If S ⊆ P

k−1
, let

ν(S) =
∑

x∈S ν(x).
The weight w(C) of a 
ode C is the number of 
oordinate positions

where some 
odeword is non-zero. The rth minimum weight dr(C) is the

least weight of an r-dimensional sub
ode. Clearly d0 = 0, and d1 = d is the

usual minimum distan
e. The sequen
e (d1, d2, . . . dk) is known as the weight
hierar
hy, and equivalent 
odes have the same weight hierar
hy. Sin
e every


ode is equivalent to a 
ode without zero positions, we assume that dk = n

for all 
odes en
ountered.

The weight hierar
hy (d1, d2, . . . dk) is also de�ned for a proje
tive system

X ⊆ Pk−1
des
ribed by ν in that

dr := ν(Pk−1) − max{ν(Π) | Π ⊆ Pk−1, codim Π = r}.

The 
orresponden
e between proje
tive systems and linear 
odes preserves

weight hierar
hies [6, 8℄.

A produ
t 
ode A ⊗ B is the tensor produ
t of two linear 
odes, A and

B. The tensor produ
t is generated by the ve
tors on the form

x⊗ y := (xiyj | 1 ≤ i ≤ n, 1 ≤ j ≤ m),

where x = (x1, . . . xn) ∈ A and y = (y1, . . . ym) ∈ B. Sin
e a linear form


an be viewed as a ve
tor, we will also write g ⊗ h for two linear forms g

and h. When A and B are [nA, kA] and [nB, kB ] linear 
odes, A ⊗ B is an

[nAnB, kAkB ] 
ode.
The weight hierar
hy has been studied by several resear
hers during the

last de
ade, and there have been attempts to give a formula to express the

weight hierar
hy of a produ
t 
ode in terms of the weight hierar
hies of

the 
omponent 
odes. Wei and Yang [9℄ gave a 
onje
ture for the weight

hierar
hy of 
hained 
odes.

De�nition 1 (Chain Condition)

A 
ode C is 
hained if there is a 
hain of sub
odes

{0} = D0 ⊆ D1 ⊆ . . . ⊆ Dk = C,

su
h that dimDr = r and w(Dr) = dr.

De�nition 2

Given two linear 
odes A and B, let

d∗r(A ⊗ B) = min

{ s
∑

i=1

(di(A) − di−1(A))dti (B)

∣

∣

∣

∣

1 ≤ ts ≤ . . . ≤ t1 ≤ kB , s ≤ kA,

s
∑

i=1

ti = r

}

.
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Wei and Yang 
onje
tured that dr = d∗r for the produ
t of 
hained 
odes.

Barbero and Tena [1℄ proved this for r ≤ 4. The main result of this paper is

the following theorem, whi
h implies the 
onje
ture.

Theorem 1

For any two linear 
odes A and B, dr(A⊗B) ≥ d∗r(A⊗B) for 0 ≤ r ≤ kAkB .

If A and B are 
hained 
odes, then equality holds for all r.

2 Proof of the main result

We will prove Theorem 1 in terms of proje
tive systems. Given two 
odes

A and B, and the 
orresponding proje
tive systems, we have to �nd the

proje
tive system 
orresponding to A ⊗ B. This will be the �rst step in the

proof.

Lemma 1 (Basis lemma)

If {xi | i = 1, . . . kA} and {yi | i = 1, . . . kB} are bases for A and B, then

{xi ⊗ yj | 1 ≤ i ≤ kA, 1 ≤ j ≤ kB} is a basis for A ⊗ B.

This is a well-known fa
t, so we omit the proof. With regard to produ
t


odes, it basi
ally says that we 
an form a generator matrix for A ⊗ B, by

taking as rows all possible produ
t x ⊗ y, where x is a row in a generator

matrix of A, and y is a row in a generator matrix for B.

The following proposition says that we 
an equivalently form the gener-

ator matrix by taking produ
ts of 
olumns.

Proposition 1

If A and B are linear 
odes de�ned by the ve
tor systems YA and YB, then

the ve
tor system de�ning C := A ⊗ B is

YC = YA ⊙ YB := {x ⊗ y | x ∈ YA,y ∈ YB}.

Proof: For any ve
tor x we write x[i] for its ith 
oordinate. Let {ai} and
{bj} be bases for A and B respe
tively, and {cij = ai ⊗ bj} the indu
ed

basis for C. Let the 
ode parameters be [nA, kA] for A, [nB, kB ] for B, and

[nC , kC ] for C.

Now, any 
odeword c ∈ C is written as

kA
∑

i=1

kB
∑

j=1

m[i, j]cij ,

where m is a message word, i.e. a kC-dimensional ve
tor over the base �eld.

The 
oordinates are given as

c[a, b] =

kA
∑

i=1

kB
∑

j=1

m[i, j]cij [a, b] =

kA
∑

i=1

kB
∑

j=1

m[i, j]ai[a]bj [b] = gab(m),
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where gab is a linear form in kC variables. In fa
t gab = gA
a ⊗ gB

b , where

gA
a =

∑

ai[a]xi is the ath 
olumn of the generator matrix of A, and gB
b =

∑

bi[b]xi the bth 
olumn of the generator matrix of B. �

Corollary 1

If A and B are linear 
odes de�ned by the proje
tive systems XA and XB ,

then C := A⊗B is de�ned by XC = σ(XA,XB), where σ : PkA−1×PkB−1 →
P

kAkB−1
is the Segre embedding.

The Segre embedding is de�ned by (a, b) 7→ a ⊗ b, and it is well known

that it is bije
tive on its image, whi
h is 
alled a Segre variety Y . In other

words, a point c ∈ PkAkB−1

an be de
omposed as c = a⊗ b, a ∈ PkA−1

and

b ∈ PkB−1
, if and only if c ∈ Y . The de
omposition is unique when it exists.

Corollary 2

Let νA, νB , and νC be the value assignments des
ribing XA ⊆ PkA−1
, XB ⊆

P

kB−1
, and XC ⊆ PkAkB−1

respe
tively. We have:

νC(a ⊗ b) = νA(a) · νB(b), ∀a ∈ PkA−1,∀b ∈ PkB−1, (1)

νC(c) = 0, ∀c 6∈ Y.

We de�ne the di�eren
e sequen
e of a linear 
ode or proje
tive system

to be (δ0, δ1, . . . δk−1), where

δi := dk−i − dk−i−1.

We note that in the proje
tive system 
orresponding to C, the maximum

value of any r-spa
e is

∆r(C) :=

r
∑

i=0

δi(C) = dk(C) − dk−r−1(C). (2)

We reformulate the expression for d∗r . First we note that we 
an �x

s = kA and allow the ti to be zero:

d∗r(A ⊗ B) = min

{ kA
∑

i=1

(di(A) − di−1(A))dti (B)

∣

∣

∣

∣

0 ≤ tkA
≤ . . . ≤ t1 ≤ kB ,

kA
∑

i=1

ti = r

}

.
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Now we write

d∗r(A ⊗ B) = min

{ kA
∑

i=1

δkA−i(A)

(

dk(B) −

kB−ti−1
∑

j=0

δj(B)

)∣

∣

∣

∣

0 ≤ tkA
≤ . . . ≤ t1 ≤ kB ,

kA
∑

i=1

ti = r

}

,

d∗r(A ⊗ B) = dk(A)dk(B) − max

{ kA
∑

i=1

δkA−i(A)

kB−ti−1
∑

j=0

δj(B)

∣

∣

∣

∣

0 ≤ tkA
≤ . . . ≤ t1 ≤ kB ,

kA
∑

i=1

ti = r

}

.

We de�ne ∆∗

r from d∗r, just as ∆r is de�ned from dr:

∆∗

r(A ⊗ B) := dk(A)dk(B) − d∗kC−r−1(A ⊗ B). (3)

We get:

∆∗

r(A ⊗ B) = max

{ kA−1
∑

i=0

δi(A)

kB−t′
i
−1

∑

j=0

δj(B)

∣

∣

∣

∣

0 ≤ t′0 ≤ . . . ≤ t′kA−1 ≤ kB ,

kA−1
∑

i=0

t′i = kC − r − 1

}

,

where t′i = tkA−i. We rearrange the expression to get:

∆∗

r(A ⊗ B) = max

{ kA−1
∑

i=0

δi(A)∆t′′
i
−1(B)

∣

∣

∣

∣

0 ≤ t′′kA−1 ≤ . . . ≤ t′′0 ≤ kB ,

kA−1
∑

i=0

t′′i = r + 1

}

,

(4)

where t′′i = kB−t′i. Note that ∆i = 0 for i < 0, and ∆∗

i (A⊗B) > ∆∗

i−1
(A⊗B)

for 0 ≤ i ≤ kC − 1.

Lemma 2

For any two linear 
odes A and B, the following are equivalent for r′ =
0, 1, . . . kAkB − 1:

∆r(A ⊗ B) ≤ ∆∗

r(A ⊗ B), r = r′, (5)

dr(A ⊗ B) ≥ d∗r(A ⊗ B), r = kAkB − r′ − 1. (6)

Equality in (5) is equivalent with equality in (6).
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Proof: This is obvious from the de�nitions in Equations (2) and (3). �

Proof of Theorem 1: First we prove that ∆r(A ⊗ B) ≤ ∆∗

r(A ⊗ B) for
r = 0, 1, . . . , kAkB − 1.

We 
onsider the proje
tive systems XA ⊆ P

kA−1
, XB ⊆ P

kB−1
, and

XC := XA ⊙ XB ⊆ PkAkB−1

orresponding to the 
odes A, B, and C :=

A ⊗ B. Let νA, νB , and ν = νC be the 
orresponding value assignments.

Let Π ⊆ PkAkB−1
be a subspa
e of dimension r and value ν(Π) = ∆r(C).

Choose pi ∈ P
kA−1

for 0 ≤ i ≤ kA−1 su
h that pi is proje
tively independent

of {pj | j < i}, and maximising the dimension of the set of points in Π with

pi as the left hand fa
tor, for 0 ≤ i < kA. Note that for su�
iently large i,

pi may not o

ur as a fa
tor of any point in Π.
Let Ti ⊆ P

kB−1
be the largest set su
h that pi ⊗ Ti ⊆ Π. Due to

the bilinearity of the Segre embedding, the Ti are subspa
es. Write ti :=
dim lin Ti = dim Ti + 1, where dim lin denotes the linear dimension. By the

de�nition of the pi, we have ti ≥ ti+1. Let Si ⊆ Π be the set of points whose

�rst fa
tor is in 〈{pj | 0 ≤ j ≤ i}〉.
Clearly ν(S0) = νA(p0)νB(T0) ≤ δ0(A)∆t0−1(B) from Corollary 2 (1).

Now look at Si := Si\Si−1 ⊆ Π. For any point a ⊗ b ∈ Si, we have

a ∈ Ai := 〈{pj | 0 ≤ j ≤ i}〉\〈{pj | 0 ≤ j ≤ i − 1}〉. (7)

Let R(a) ⊆ Π be the subspa
e of points with a as the left hand fa
tor. Note

that R(pi) = pi⊗Ti. For any a ∈ Ai, we have dim R(a) ≤ dimR(pi) = ti−1,
by the de�nition of the pi. Therefore ν(R(a)) ≤ νA(a)∆ti−1(B), and

ν(Si) =
∑

a∈Ai

ν(R(a)) ≤ νA(Ai)∆ti−1(B). (8)

Obviously

ν(Π) =

kA−1
∑

i=0

ν(Si) ≤

kA−1
∑

i=0

νA(Ai)∆ti−1(B). (9)

Now 
onsider the sum τ :=
∑kA−1

i=0
ti =

∑kA−1

i=0
dim linR(pi). All the

R(pi) are disjoint, so their join Π′
has linear dimension τ . Sin
e Π′ ⊆ Π, we

have τ ≤ dim linΠ = r + 1.
Note that the ∆ti−1(B) is monotoni
ally non-in
reasing in i, and that

νA

( i
⋃

j=0

Aj

)

≤ ∆i(A).

Hen
e the highest possible value is obtained if νA(Ai) = δi(A), in whi
h


ase the right hand side of (9) is one of the expressions eligible for the
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maximisation in the expression (4) for ∆∗

τ−1. The t′′i in (4) are given by

the ti in this proof. In other words

ν(Π) ≤ ∆∗

τ−1(A ⊗ B) ≤ ∆∗

r(A ⊗ B).

It remains to show that ifA and B are 
hained 
odes, equality is obtained.

In fa
t we know this from [9℄, be
ause d∗r was proved to give an upper bound

on dr, but we give a dire
t proof for 
ompleteness.

Consider a set {ti = t′′i } attaining maximum in the de�nition of ∆∗

r(A⊗
B). Sin
e A is 
hained, we 
an take a set {pi} su
h that νA(〈{pj | j ≤ i}〉) =
∆i(A). Be
ause B is 
hained, we 
an �nd sets Ti su
h that νB(Ti) = ∆ti−1,

for 0 ≤ i ≤ kA−1, and T0 ⊇ T1 ⊇ . . . ⊇ TkA−1. Also let R(a) = a⊗Ti for all

a ∈ Ai, as de�ned in Equation (7). We see that the join Π′
of all the R(pi)

has dimension dim Π′ = r :=
∑kA−1

i=0
ti − 1, where ti := dim lin Ti. Sin
e the

Ti form a 
hain of in
lusions, all R(a) ⊆ Π′
by the bilinearity of the Segre

embedding.

Now we must �nd the value of Π′
. By de�nition νB(Ti) = ∆ti−1(B), and

νA(Ai) = δi(A). Hen
e we have equality in (8) and ν(Π′) = ∆∗

r(A⊗B) from
(9). �

3 Further results

Theorem 2

For any two 
odes A and B, dr(A ⊗ B) = d∗r(A ⊗ B) for r ∈ {0, 1, 2, k −
2, k − 1, k}.

For r = 0 this is trivial, and for r = 1 and r = k it is well known. Wei

and Yang [9℄ proved it for r = 2. We prove it for r = k − 1 and r = k − 2
below, but �rst we need some basi
 properties of the Segre variety.

A Segre variety Y is the interse
tion of hypersurfa
es of degree two.

Hen
e any line meeting Y in at least three points is entirely 
ontained in Y .

Lemma 3

Let Y be a Segre variety, and let ℓ ⊆ PkAkB−1
be a line. Then the line ℓ

fa
tors into a point ℘ in one 
omponent, and a line ℓ′ in the other 
omponent;

that is ℓ = ℘ ⊗ ℓ′ or ℓ = ℓ′ ⊗ ℘.

The 
onverse, that a produ
t ℓ′ ⊗℘ or ℘⊗ ℓ′ is a line ℓ ∈ Y , is obviously

true by bilinearity.

We believe that Lemma 3 is obvious from known results in algebrai


geometry (e.g. [4, Example 8.4.2℄). We in
lude the following simple proof for

the bene�t of those who are not familiar with algebrai
 geometry.

Proof: Consider a line ℓ meeting Y in at least three distin
t points, a⊗ b,

c ⊗ d, and e ⊗ f . If the 
omponent points are not distin
t, say a = c, then

we get a line, say a ⊗ 〈b, d〉 ⊆ Y , by bilinearity. Hen
e we assume that the

six 
omponent points are distin
t.
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Consider the nine points

a ⊗ b, a ⊗ d, a ⊗ f, c ⊗ b, c ⊗ d, c ⊗ f, e ⊗ b, e ⊗ d, e ⊗ f.

They are all linearly independent, unless either a, c, and e, or b, d, and f are

linearly dependent. By symmetry, we 
an assume without loss of generality

that a, c, and e are 
ollinear. It follows that any three points with the same

right hand 
omponent must be linearly dependent, by bilinearity.

This gives three disjoint lines; all of whi
h meets ℓ. The linear span of

su
h a 
on�guration 
an have dimension at most 4. If b, d, and f are linearly

independent, the dimension is 5 by Lemma 1, sin
e a and c are distin
t. The


ontradi
tion shows that b, d, and f are 
ollinear, and hen
e that any three

points with the same �rst 
omponent are 
ollinear.

Sin
e all points with a 
ommon 
omponent are 
ollinear, we 
an visualise

them as a 3×3 grid of points. There is also a diagonal line in this grid, ℓ. It is
easily veri�ed that this 
on�guration is 
ontained in a plane, and hen
e any

pair of lines interse
t. The line with a as �rst 
omponent 
annot interse
t

the line with c as �rst 
omponent unless a = c, so this is a 
ontradi
tion. �

Proof of Theorem 2: We prove that for two linear 
odes A and B

∆0(A ⊗ B) = ∆∗

0(A ⊗ B) = δ0(A)δ0(B), (10)

∆1(A ⊗ B) = ∆∗

1(A ⊗ B). (11)

We 
onsider the proje
tive systems XA ⊆ P

kA−1
, XB ⊆ P

kB−1
, and

XC ⊆ PkAkB−1

orresponding to A, B, and C := A⊗B, and the des
ribing

value assignments νA, νB , and νC . Equation (10) is obvious from Corollary 2.

Now 
onsider a line ℓ ⊆ PkAkB−1
su
h that νC(ℓ) = ∆1(C).

If ℓ meets the Segre variety in at most two points, we have

νC(ℓ) = ∆1(C) ≤ max{δ0(A)(δ0(B) + δ′0(B)), (δ0(A) + δ′0(A))δ0(B)},

where δ′0 is the se
ond highest value of any point. Clearly δ′0 ≤ δ1, so this

gives

∆1(C) ≤ ∆∗

r(A ⊗ B).

Otherwise ℓ is entirely 
ontained in the Segre variety, and we 
an write

ℓ = a ⊗ ℓ1 or ℓ = ℓ2 ⊗ b. Clearly the highest possible value in ea
h 
ase is

obtained if νA(a) = δ0(A), νB(b) = δ0(B), νA(ℓ2) = ∆1(A), and νB(ℓ1) =
∆1(B). Then νC(a ⊗ ℓ1) = δ0(A)∆1(B) and νC(ℓ2 ⊗ b) = ∆1(A)δ0(B), and
the maximum of these is ∆∗

1(A ⊗ B). Equation (11) follows. �

Corollary 3

For any produ
t 
ode A⊗B of dimension at most 5, dr(A⊗B) = d∗r(A⊗B),
0 ≤ r ≤ kAkB .

This is an easy 
orollary of Theorem 2. The following examples show that

for a six-dimensional produ
t 
ode this may or may not hold for r = 3 = k−3.

8



Example 3.1 Consider the binary [4, 3] 
ode A given by a value assignment

νA. Let a ∈ P2
be a point and ℓA 6∋ a a line, su
h that the des
ribing value

assignment is given by νA(p) = 1 for p ∈ ℓA or p = a, and νA(p) = 0
otherwise. This is a 
hained 
ode with di�eren
e sequen
e is (1, 2, 1).

Then take the binary [17, 3] 
ode B given by a value assignment νB. Let

b ∈ P2
be a point and ℓB 6∋ b a line, su
h that the des
ribing value assignment

is given by νB(b) = 5, νB(p) = 4 for p ∈ ℓB, and νB(p) = 0 otherwise. This

is a non-
hain 
ode with di�eren
e sequen
e (5, 7, 5).
Now 
onsider C := A⊗B. To �nd ∆∗

2(C) we 
onsider the possible 
hoi
es
for {t′′i } in Equation (4):

{3, 0, 0} : δ0(A)∆2(B) = 17

{2, 1, 0} : δ0(A)∆1(B) + δ1(A)∆0(B) = 22

{1, 1, 1} : ∆2(A)∆0(B) = 20.

The maximum is ∆∗

2(C) = 22, and we 
on
lude that d∗3 = 4 · 17 − 22 = 46.
The 
onstru
tion to obtain a plane P of value 22, assumes that all fa
-

torisable points in P are 
ontained in the union of two lines. The best we


an do with this approa
h is to take P := 〈a′ ⊗ ℓB ∪ ℓA ⊗ b′〉 where a′ ∈ ℓA

and b′ ∈ ℓB. This gives ∆2(C) = ν(P ) = 20 < 22. Hen
e d3(C) = 48 > 46.
To get a value of ∆∗

2(C) = 22, we should have had νB(b′) = 6, i.e. that ℓB


ontains a point of maximum value.

Example 3.2 Take the previous example and redu
e the length of B by set-

ting νB(b) = 3, and νB(p) = 2 for p ∈ ℓB. Now B is a [9, 3] non-
hain


ode with di�eren
e sequen
e (3, 3, 3). This gives the following 
hoi
es for

the maximisation of ∆∗

2(C):

{3, 0, 0} : δ0(A)∆2(B) = 9

{2, 1, 0} : δ0(A)∆1(B) + δ1(A)∆0(B) = 12

{1, 1, 1} : ∆2(A)∆0(B) = 12.

The maximum is ∆∗

2(C) = 12, and this is realised by the plane a⊗P2
. Hen
e

we get d3(C) = d∗3(C) = 4 · 9 − 12 = 24.

Remark 3.1

Even if A and B are 
hained 
odes, A ⊗ B may be non-
hain.

We give an example to show this remark.

Example 3.3 De�ne two value assignments νA and νB on P

2
, de�ning two

binary, 
hained 
odes A and B. Let a, b, c ∈ P2
be proje
tively independent
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points, and de�ne the value assignments as follows:

νA(a) = νA(b) = 3

νA(c) = 1

νA(p) = 0, ∀p 6∈ {a, b, c}

νB(a) = 3

νB(p) = 1, ∀p 6= a.

The produ
t C = A⊗B 
orresponds to a value assignment ν on P

8
. All

points of positive value in P

8
are lo
ated in three disjoint planes, Πa, Πb,

and Πc, 
onsisting of the points with a, b, or c respe
tively as the �rst fa
tor.

We have

ν(a ⊗ a) = ν(b ⊗ a) = 9

ν(a ⊗ p) = ν(b ⊗ p) = 3, ∀p 6= a

ν(c ⊗ a) = 3

ν(c ⊗ p) = 1, ∀p 6= a.

We see that the only line of maximum value is ℓ := 〈a⊗a, b⊗a〉, and the

planes of maximum value are Πa and Πb, neither of whi
h 
ontains ℓ. Hen
e

C is non-
hain.
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