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Abstract

The weight of a code is the number of coordinate positions where
no codeword is zero. The rth minimum weight d, is the least weight
of any r-dimensional subcode. Wei and Yang gave a conjecture about
the minimum weights for some product codes. In this paper we will
find a relation between product codes and the Segre embedding of a
pair of projective systems, and we use this to prove the conjecture.
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1 Introduction

An [n, k] code is a k-dimensional subspace C' C V of some n-dimensional
vector space V. It can be defined by a k x n matrix G, called the generator
matrix. The message space M is a k-dimensional vector space, and G gives
a linear transformation M — V.

The rows of (G is a basis for C'. The columns can be viewed as linear forms,
i.e. vectors in M*, the dual space of M. This means that if a = (aq,...a;) is
the rth column in G, then a = a1x1+. ..+ agxy is a linear form. If m € M is
a message word, then a(m) is the rth coordinate in the corresponding code
word.

We can now see that a linear code may be described by either a basis
or a system of linear forms. By a system we will in this paper mean a
collection with possible repetition of elements. Codes are considered to be
equivalent if one can be obtained from the other by permuting coordinate
positions, multiplying certain coordinates by a non-zero scalar, or deleting
zero positions. This corresponds to reordering the vector system, replacing
linear forms by proportional forms, and deleting zero forms. We conclude
that the linear forms may be represented by projective points, and in this
case we talk about a projective system (or projective multiset [3]) rather
than a vector system.

Given a projective system X C P*~! the value v(x) of x € P! is
the number of occurrences of x in X. This gives a map v : PF 1 —



{0,1,2,...}, called the value assignment describing X. If S C PF~1 let
V(S) = e V().

The weight w(C') of a code C is the number of coordinate positions
where some codeword is non-zero. The rth minimum weight d,(C) is the
least weight of an r-dimensional subcode. Clearly dy = 0, and d; = d is the
usual minimum distance. The sequence (dy,ds, ... dy) is known as the weight
hierarchy, and equivalent codes have the same weight hierarchy. Since every
code is equivalent to a code without zero positions, we assume that d = n
for all codes encountered.

The weight hierarchy (di, da, ... d)) is also defined for a projective system
X C P*~! described by v in that

d, = V(IPk_l) —max{v(II) | II C P+ codimIT = r}.

The correspondence between projective systems and linear codes preserves
weight hierarchies [6, 8].

A product code A ® B is the tensor product of two linear codes, A and
B. The tensor product is generated by the vectors on the form

x®y = (zy; |1 <i<n,1<j5<m),

where x = (r1,...2,) € Aand y = (y1,...Yym) € B. Since a linear form
can be viewed as a vector, we will also write ¢ ® h for two linear forms g
and h. When A and B are [na, k4] and [np, kp| linear codes, A ® B is an
[nanp, kakp] code.

The weight hierarchy has been studied by several researchers during the
last decade, and there have been attempts to give a formula to express the
weight hierarchy of a product code in terms of the weight hierarchies of
the component codes. Wei and Yang [9] gave a conjecture for the weight
hierarchy of chained codes.

Definition 1 (Chain Condition)
A code C is chained if there is a chain of subcodes

{0 =Dy C Dy C...CD=0C,
such that dim D, = r and w(D,) = d,.

Definition 2
Given two linear codes A and B, let

&40 B) = nin { Y (004) ~ s (40 (B)



Wei and Yang conjectured that d, = d; for the product of chained codes.
Barbero and Tena [1] proved this for » < 4. The main result of this paper is
the following theorem, which implies the conjecture.

Theorem 1
For any two linear codes A and B, d,(A® B) > d:(A® B) for 0 <r < kakp.
If A and B are chained codes, then equality holds for all r.

2 Proof of the main result

We will prove Theorem 1 in terms of projective systems. Given two codes
A and B, and the corresponding projective systems, we have to find the
projective system corresponding to A ® B. This will be the first step in the
proof.

Lemma 1 (Basis lemma)
If{x; |i=1,...ka} and {y; | i = 1,...kp} are bases for A and B, then
{xi®y;|1<i<ka1<j<kp}isa basisfor A® B.

This is a well-known fact, so we omit the proof. With regard to product
codes, it basically says that we can form a generator matrix for A ® B, by
taking as rows all possible product x ® y, where x is a row in a generator
matrix of A, and y is a row in a generator matrix for B.

The following proposition says that we can equivalently form the gener-
ator matrix by taking products of columns.

Proposition 1
If A and B are linear codes defined by the vector systems Y4 and Yp, then
the vector system defining C := A® B is

Yo=Y 10Yp ={x®y|xeYyycYs}

Proof: For any vector x we write x[i| for its ith coordinate. Let {a;} and
{b;} be bases for A and B respectively, and {c;; = a; ® b;} the induced
basis for C. Let the code parameters be [n4, k4] for A, [np, kg] for B, and
[nc, ko) for C.

Now, any codeword c € C' is written as

ka kp

Z Z m[i, j]Cij,

i=1 j=1

where m is a message word, i.e. a ko-dimensional vector over the base field.
The coordinates are given as

ka kg ka kg
c[a, b] = sz[zvj]clj [a7 b] = sz[zvj]al[a]bj[b] = gab(m)7
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where gq; is a linear form in ko variables. In fact gu = g2 ® g,?, where
g2 = > a;alw; is the ath column of the generator matrix of A, and g =
> bj[b]z; the bth column of the generator matrix of B. O

Corollary 1

If A and B are linear codes defined by the projective systems X 4 and Xp,
then C := A®B is defined by X¢ = 0(X 4, Xp), where o : PFa~1xPks—1
Pkaks—1 jg the Segre embedding.

The Segre embedding is defined by (a,b) — a ® b, and it is well known
that it is bijective on its image, which is called a Segre variety Y. In other
words, a point ¢ € P¥4¥5=1 can be decomposed as ¢ = a ® b, a € P*4~1 and
b e Pk8=1 if and only if ¢ € Y. The decomposition is unique when it exists.

Corollary 2
Let v4, vp, and v¢ be the value assignments describing X 4 C IPkA*l, Xp C
Pks—1 and Xo C P*akB=1 respectively. We have:
ve(a®b) =va(a) -vp(b), Vae PFA~! vpe Pho—l (1)
VC(C) — 05 VC € Y

We define the difference sequence of a linear code or projective system
to be (dg,01,...0k—1), where

0i = dg—; — dg—i—1.

We note that in the projective system corresponding to C, the maximum
value of any r-space is

AL(C) =) 5i(C) = dp(C) = dp—p—1(C). (2)
=0

We reformulate the expression for df. First we note that we can fix
s = k4 and allow the t; to be zero:

ka
d*(A® B) = min { Z(di(A) —d;_1(A))dy, (B)‘

i=1

ka
0§tkA§...§t1§k:B,Zti:r}.

i=1



Now we write

ka kp—t;—1
di(A@B):min{ZékA_i(A< Z 55 >‘
=1

k?A
ogtkAg...gtlng,Ztizr},

i=1
kp—t;—1

T(A ® B) = de(A)iy(B maX{Z&mz S 65
=0

ka
0§tkA§...§t1§kB,Zti:r}.
=1

We define A} from dj, just as A, is defined from d,:

AL (A® B) == dy(A)d(B) — dj,,_,_1(A® B). (3)
We get:
ka—1 kB*tgfl
A(A® B) = max{ d a4 > @»(B)‘

i=0 j=0
ka—1

0<th<...<th, <kp ) t;:kc—r—l},
=0

where ¢ = t;,,_;,. We rearrange the expression to get:

ka—1
AY(A® B) max{ Z 6i(A) Ay B)'

ka (4)
A
0<tf, 1< <th<kp Y t;/=r+1},

=0
where ¢/ = kp—t]. Note that A; = 0for ¢ < 0, and Af(A®B) > Af |(A®B)
for0<i<ke-—1.

Lemma 2

For any two linear codes A and B, the following are equivalent for v’ =
0,1,...kakg — 1:

A (A2 B)<AX(A®B), r=1, (5)
d-(A®@ B) > d:(A® B), r=kakp—1r'—1. (6)

Equality in (5) is equivalent with equality in (6).



Proof: This is obvious from the definitions in Equations (2) and (3). O

Proof of Theorem 1: First we prove that A,.(A® B) < A*(A® B) for
r=0,1,... . kakp — 1.

We consider the projective systems X, C IPkA*l, Xp C IP’“B*I, and
Xc == X4 ® Xp C Pkaks=1 corresponding to the codes A, B, and C :=
A® B. Let va, v, and v = vo be the corresponding value assignments.

Let TI C P*4¥2~1 be a subspace of dimension 7 and value v(IT) = A,(C).
Choose p; € P¥a=1 for 0 < i < ks—1 such that p; is projectively independent
of {p; | j < i}, and maximising the dimension of the set of points in II with
p; as the left hand factor, for 0 < ¢ < k4. Note that for sufficiently large 1,
p; may not occur as a factor of any point in II.

Let 7, C PFB~1 be the largest set such that p; ® T; C II. Due to
the bilinearity of the Segre embedding, the T; are subspaces. Write t; :=
dimlinT; = dim T; 4+ 1, where dim lin denotes the linear dimension. By the
definition of the p;, we have t; > t;11. Let S; C II be the set of points whose
first factor is in ({p; | 0 < j < 4}).

Clearly v(So) = va(po)ve(To) < d0(A)Ay—1(B) from Corollary 2 (1).
Now look at &; := S;\S;—1 C II. For any point a ® b € &;, we have

a€®:={p; |0<j <ih\({p; |0 <j <i—1}). (7)

Let R(a) C II be the subspace of points with a as the left hand factor. Note
that R(p;) = p;®T;. For any a € ;, we have dim R(a) < dim R(p;) = t; —1,
by the definition of the p;. Therefore v(R(a)) < va(a)Ay_1(B), and

v(&i) = ) v(R(a) < va(;)Ay-1(B). (8)

ac®;
Obviously
ka—1 ka—1
v(IM) = Y (&) < Y va()Ay1(B). (9)
i=0 i=0

Now consider the sum 7 := Zfﬁgl t; = Zfigl dimlin R(p;). All the
R(p;) are disjoint, so their join IT" has linear dimension 7. Since IT' C II, we
have 7 < dimlinIl = » + 1.

Note that the A;,_;(B) is monotonically non-increasing in 4, and that

VA(j[jO %) < M),

Hence the highest possible value is obtained if v4(2;) = 0;(A), in which
case the right hand side of (9) is one of the expressions eligible for the



maximisation in the expression (4) for A¥_;. The ¢/ in (4) are given by
the t; in this proof. In other words

y(Il) < Af_1(A® B) < AX(A® B).

It remains to show that if A and B are chained codes, equality is obtained.
In fact we know this from [9], because d was proved to give an upper bound
on d,, but we give a direct proof for completeness.

Consider a set {t; = t/'} attaining maximum in the definition of A%(A ®
B). Since A is chained, we can take a set {p;} such that v4(({p; | j <i})) =
A;(A). Because B is chained, we can find sets 7; such that vp(T;) = Ay, _1,
for0<i<ks—1l,and 7o D711 O ... DT}, 1. Alsolet R(a) = a®T; for all
a € U;, as defined in Equation (7). We see that the join II' of all the R(p;)
has dimension dim II' = r := Zféo_l t; — 1, where t; := dimlinT;. Since the
T; form a chain of inclusions, all R(a) C II' by the bilinearity of the Segre
embedding.

Now we must find the value of IT'. By definition v5(7;) = A4, —1(B), and
va(2;) = 0;(A). Hence we have equality in (8) and v(II') = A¥(A® B) from
(9). O

3 Further results

Theorem 2
For any two codes A and B, d.(A® B) = d:(A® B) for r € {0,1,2,k —
2.k —1,k).

For r = 0 this is trivial, and for » = 1 and r = k it is well known. Wei
and Yang [9] proved it for r = 2. We prove it forr =k —1and r =k — 2
below, but first we need some basic properties of the Segre variety.

A Segre variety Y is the intersection of hypersurfaces of degree two.
Hence any line meeting Y in at least three points is entirely contained in Y.

Lemma 3

Let Y be a Segre variety, and let ¢ C P*4¥8=1 be a line. Then the line ¢
factors into a point ¢ in one component, and a line ¢’ in the other component;
thatisl{ = p® ¢ orl =1' ® p.

The converse, that a product ¢/ ® g or p® ¢’ is a line £ € Y, is obviously
true by bilinearity.

We believe that Lemma 3 is obvious from known results in algebraic

geometry (e.g. [4, Example 8.4.2]). We include the following simple proof for
the benefit of those who are not familiar with algebraic geometry.
Proof: Consider a line £ meeting Y in at least three distinct points, a ® b,
c®d, and e ® f. If the component points are not distinct, say a = ¢, then
we get a line, say a ® (b,d) C Y, by bilinearity. Hence we assume that the
six component points are distinct.



Consider the nine points
a®b,a®d,a® f,c®b,c®d,c® f,e®be®d,e® f.

They are all linearly independent, unless either a, ¢, and e, or b, d, and f are
linearly dependent. By symmetry, we can assume without loss of generality
that a, ¢, and e are collinear. It follows that any three points with the same
right hand component must be linearly dependent, by bilinearity.

This gives three disjoint lines; all of which meets ¢. The linear span of
such a configuration can have dimension at most 4. If b, d, and f are linearly
independent, the dimension is 5 by Lemma 1, since a and c are distinct. The
contradiction shows that b, d, and f are collinear, and hence that any three
points with the same first component are collinear.

Since all points with a common component are collinear, we can visualise
them as a 3x 3 grid of points. There is also a diagonal line in this grid, £. It is
easily verified that this configuration is contained in a plane, and hence any
pair of lines intersect. The line with a as first component cannot intersect
the line with c as first component unless a = ¢, so this is a contradiction. [J

Proof of Theorem 2: We prove that for two linear codes A and B

Ao(A® B) = Aj(A® B) = §o(A)d(B), (10)
A1(A® B) = Aj(A® B). (11)

We consider the projective systems X4 C PFa~1 Xp C PFs—1 and
X¢c C PRaks=1 corresponding to A, B, and C := A ® B, and the describing
value assignments v 4, vp, and v¢. Equation (10) is obvious from Corollary 2.

Now consider a line £ C P¥4*8=1 such that vo(£) = A1 (C).

If £ meets the Segre variety in at most two points, we have

ve(l) = Ay(C) < max{do(A)(do(B) + dy(B)), (do(A) + 55(A))do(B)},

where ¢, is the second highest value of any point. Clearly d(, < 01, so this
gives

A(C) < AN(A® B).

Otherwise ¢ is entirely contained in the Segre variety, and we can write
{=a®¥ or {f =Ly ®b. Clearly the highest possible value in each case is
obtained if v4(a) = 69(A), vp(b) = do(B), va(ls) = A1(A), and vp(ly) =
A1(B). Then vo(a ® ¢1) = 60(A)A1(B) and vo(le @ b) = A1(A)dy(B), and
the maximum of these is Aj(A ® B). Equation (11) follows. O

Corollary 3
For any product code A® B of dimension at most 5, d,(A® B) = di(A® B),
0<r<kqkp.

This is an easy corollary of Theorem 2. The following examples show that
for a six-dimensional product code this may or may not hold for r = 3 = k—3.



Example 3.1 Consider the binary [4, 3] code A given by a value assignment
va. Let a € P? be a point and 4 % a a line, such that the describing value
assignment is given by va(p) = 1 for p € €4 or p = a, and va(p) = 0
otherwise. This is a chained code with difference sequence is (1,2,1).

Then take the binary [17,3] code B given by a value assignment vg. Let
b € P2 be a point and {5 % b a line, such that the describing value assignment
is given by vp(b) =5, vp(p) =4 for p € lp, and vp(p) = 0 otherwise. This
is a non-chain code with difference sequence (5,7,5).

Now consider C := A®B. To find A5(C') we consider the possible choices
for {t!} in Equation (4):

(3,0,0}: Go(A)As(B) = 17
{2, 1, 0} : 50(A)A1 + 01 (A)Ao(B) =22
{1, 1, 1} : AQ(A)A()(B) = 20.

The mazimum is A3(C) = 22, and we conclude that d5 =4 - 17 — 22 = 46.

The construction to obtain a plane P of value 22, assumes that all fac-
torisable points in P are contained in the union of two lines. The best we
can do with this approach is to take P := (a' @ L U L4 @ V') where o’ € {4
and V/ € {p. This gives Ao(C) = v(P) = 20 < 22. Hence d3(C) = 48 > 46.
To get a value of A3(C) = 22, we should have had vp(b') = 6, i.e. that {p
contains a point of maximum value.

Example 3.2 Take the previous example and reduce the length of B by set-
ting vg(b) = 3, and vp(p) = 2 for p € . Now B is a [9,3] non-chain
code with difference sequence (3,3,3). This gives the following choices for
the mazimisation of A5(C):

{3,0,0} : 50(A)A2(B) =9
{2’1’0} : 50(A) ( ) 1
(1,1,1} : Ag(A)Ag(B) = 12.

The mazimum is A3(C) = 12, and this is realised by the plane a®P?. Hence
we get d3(C) =d5(C)=4-9 —12 = 24.

Remark 3.1
Even if A and B are chained codes, A ® B may be non-chain.

We give an example to show this remark.

Example 3.3 Define two value assignments v and vy on P2, defining two
binary, chained codes A and B. Let a,b,c € P? be projectively independent



points, and define the value assignments as follows:

) =3
)=1
va(p) =0, Vp¢{a,b,c}
)=3
)=1

, Vp#a.

The product C = A ® B corresponds to a value assignment v on P8, All
points of positive value in P® are located in three disjoint planes, I1,, IIp,
and Il., consisting of the points with a, b, or ¢ respectively as the first factor.
We have

via®a)=vb®a)=9

via®@p)=vbep) =3, Vp#a
vic®a)=3
vicep)=1, Vp+#a.

We see that the only line of mazimum value is { := (a®a,bRa), and the
planes of mazimum value are 11, and 11y, neither of which contains ¢. Hence
C' is non-chain.
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