Hierarchical task analysis, situation-awareness and
support software

Hans Georg Schaathun'
(hasc@hials.no)

Magne Aarset?
(maaa@hials.no)

Runar Ostnes? Robert Rylander?
(ro@hials.no) (rory@hials.no)

"Faculty of Engineering and Physical Sciences / ?Faculty of Maritime Technology and Operations
Aalesund University College
N-6025 Alesund, Norway

KEYWORDS

Hierarchical task analysis, state machine, situation
awareness, demanding marine operations, human factor

ABSTRACT

Offshore activity is developing and resulting in new
demanding high-risk operations. Operation complexity
increases with factors like heavier loads, subsea installa-
tions, and arctic waters; operational planning require-
ments increase as well. Demanding offshore operations
are usually planned in detail, where plans may fill sev-
eral binders, leading to information overload for the
ship crews. Extracting critical information becomes a
challenge. In some cases, only a basic plan exists, and
aborted operations are quite frequent, also where a con-
tingency plan could have enabled recovery. This results
in substantial extra costs for the operating company.

The industry is facing two key challenges concerning
operational planning. One is to develop good planning
frameworks, to enable plans with robust risk manage-
ment and control. This calls for modelling techniques
for operational plans. Another is optimal presentation
of the plan for each individual crew member, both in
the briefing and in the execution phase of the opera-
tion. It is important that every individual has easy ac-
cess to the most relevant and safety critical information
for his given role and the current situation, in an easily
accessible and comprehensible format. This calls for
operational software to support situation-awareness. A
fundamental necessity to achieve this is modelling tech-
niques which support a joint understanding of the oper-
ation between operational planners, ship crew, software
engineers, and ultimately the support software. In this
paper we show how to translate hierarchical task anal-
ysis (HTA) models into software models and then into
situation-aware software prototypes.

I. BACKGROUND

Offshore activity, dominated by oil production but
but also including other installations like wind mills,
require a range of demanding operations to operate.
Examples include anchor handling for oil rigs and de-
ployment of subsea equipment. Careful planning is re-
quired, and this is conducted partially by contractors,
partially by clients, and some joint work. Both general
and specific procedures may be in force, and both ship

Fig. 1. Status quo. Plans and procedures on paper.

owner, rig owner, and project owner may have their own
rules and procedures. Complex plans are typically de-
veloped by onshore engineering teams in charge of the
overall operation. The result is an extensive procedu-
ral framework, which is increasingly difficult to digest
and utilise in an effective way for the operational crew
on-board an offshore vessel.

Current planwork and procedures are mainly based
on paper (as in Figure 1) or possibly PDF-documents.
Available software is mainly standard office packages,
with Microsoft Word as the dominant player. Diagrams
and figures may be produced by CAD tools or project
management software, with no method of integrating
information from different tools in electronic form.

Operational crew may have very limited time to re-
view the complete planwork and it is very difficult to
extract the safety critical aspects of the plan before
decisions have to be made. To reach Earth’s remain-
ing petroleum resources the offshore activity is extend-
ing into deeper waters and more hostile environments,
such as the arctic region. The technological develop-
ment is often the limiting factor, and both operations
and vessels become increasingly complex as technology
advances. Obviously more complex operations lead to
higher risk and an increasing number of issues for the
operational crew to relate to. Decision makers on board
will have to relate to increasingly complex systems, and
often several different systems and subsystems to ex-
tract the required information to execute a safe oper-
ation [8], [12]. In order to deal with the increasing

amount of information, better methods of structuring
and presentation are required.

An increased focus on bridge system integration has
been observed the last years [11]. With improved data
protocols [10], [14] it is possible to accumulate any dy-
namic information into an intelligent software system.
The challenge is to present the crew with necessary, and
only necessary, information to conduct a safe operation.
Necessary information is defined by the situation, and
will change throughout the operation. Situation aware-
ness is an important concept in human factor research,
in the sense that the human operator requires an accu-
rate understanding of the current state of affairs. We
put to you that situation awareness is also a desired
feature in the on-board software systems. In order to
present the operator with the most relevant informa-
tion, the software must be able to track the current
situation, with respect to both external environment
and the operational plan.

Existing research on related support software is
sparse in the literature. Decision support systems were
studied by Glésser et al. [6], [7], but they focused on
using sensor data from the ship and did not incorporate
operational plans in the software. In fact, their focus
was on search and rescue operations, which cannot be
planned ahead of time with the same level of detail.
Embrey et al. [3] studied techniques for workload as-
sessment for on-board crew, and considered a number
of modelling and task analysis techniques for this pur-
pose. There are also two notable initiatives considering
risk assessment [5] and risk management [9]. Unfortu-
nately, the underlying models and software architecture
have not been published.

In terms of linking modelling frameworks from differ-
ent disciplines, the human-computer interaction (HCT)
community has done some interesting work, with sev-
eral examples linking task models to software architec-
ture models. E.g, Bastide [2] integrates task models
and use-case models on the metamodel level. However,
the task models used in HCI will be different from ours,
as they focus on interaction with the software system
and the software is an integral part of the operation.
In our case, the software serves purely as a source of
information and has no active part in the operation.
Thus our models do not consider software interaction.

The purpose of the paper is to outline model transfor-
mations between operational and software models, and
further to demonstrate how the resulting models enable
situation-awareness in software. The aim is a proof of
concept rather than a complete formalisation, and fur-
ther research will be outlined in the conclusion. To
limit the scope, a single-ship operation is considered at
this stage. Our main contribution is to link the differ-
ent disciplines involved, including software engineering,
operational modelling, and offshore vessel crew. In the
conclusion we are able propose specific research ques-
tions within each discipline, and their answers will lead
to formalisation at a later stage.

II. MODELLING

A model is a difficult term because it is used for
widely different concepts in so many areas of science
and engineering, Bran Selic [13] uses the following defi-
nition for an engineering model in many of his speeches:

«A selective representation of some system that cap-
tures accurately and concisely all of its essential prop-
erties of interest for a given set of concerns. »

This definition highlights a number of features which
will be critical for modelling in most domains, and it
explains why models are used. First of all, the model is
a representation of a system, so that we can understand
the system by studying the model. Essentially, this rep-
resentation is selective, i.e. a copy is not a model, and
the selection is made in view of a given set of concerns.
Thus, different kinds of analysis will require different
kinds of models, capturing the properties relevant for
the analysis. The level of accuracy may depend on the
domain, depending, probably, more on feasibility than
on requirement.

Clearly, this definition says little about what the
model will look like. It may be diagrams, text, mathe-
matical equations, pictures, scale models, etc. It does,
however, give us a hint about why we need modelling.
Models aid the understanding of complex systems.

A. Literature overview

Several modelling frameworks and languages exist for
the domains of software engineering, risk management,
business administration and so on. Modelling does not
necessarily require formalised languages. Blackboard
diagrams go a long way. However, for our purpose, we
need to match models between the operational domain
and the software domain, and then some formalism is
required to guarantee accurate correspondence.

Hierarchical task analysis is well-known in opera-
tional communities, and we discuss that one below.
Other, more complex and formal modelling frameworks
exist, such as the classic Structured Analysis and De-
sign Technique (SADT) [1] and the more current IDEF0
standard building thereon. Tasks are modelled as ac-
tivity boxes, with arrows representing information flow
between activities or decisions to proceed to a subse-
quent activity. The system is hierarchical, so that a
coarse description can be made with a few, complex
activities, and each activity (recursively) analysed in
further detail using layers of SADT diagrams.

Software engineering has a rich literature on mod-
elling techniques and languages. Most well known is the
Unified Modeling Language (UML), which is not just
one language but rather a family of languages aiming
to model different aspects of the system. As a stan-
dard, UML has developed a very complex syntax to
allow detailed representation of models, but most of
the modelling techniques promoted by UML are well-
known in other contexts and fully usable with a much
simpler syntax.

Software engineering also studies model transforms,
that is automatic translation between models. In this

respect, source code is viewed as a model of the soft-
ware, so code generation is a special case of model
transform. Metamodels are used to formalise the struc-
ture of models, and thus to enable formal definition of
modelling transforms. This area is known as model-
driven engineering in academia and as model-driven
development in industry.

Models can fundamentally be categorised as either
descriptive or prescriptive. Descriptive models are
made after the original, in order to describe something
already existing. In contrast, prescriptive models are
made before the ‘original’ in order to explain how to
build the system. In this paper we are interested in
models which can describe the operation (or operational
plan) and prescribe the operation support software.

B. Hierarchical Task Analysis

Candidate modelling techniques for the operational
plan can be drawn from a range of related domains,
such as risk management, human performance, or or-
ganisational processes. We will focus on Hierarchical
task analysis (HTA) which emerged from psychology
and human performance research around 1970, and it
is still popular. It lends itself very well to modelling
demanding (marine) operations. A good introduction
is given by Stanton [15].

HTA is an iterative technique. At the first level, the
operation is viewed as a single task, with a clearly de-
scribed goal. Tasks are repeatedly broken down into
subtasks with an increasing level of detail. Three key
principles should be observed throughout the process:
1. The process is goal-driven, and every task must be
clearly defined by an objective statement of the planned
outcome.

2. Tasks can iteratively be broken down into subtasks,
each subtask in turn being treated as a task with an
objective definition of its goal as above.

3. The important relationship between task and sub-
tasks is one of inclusion; in a hierarchical (tree-like)
structure. The subtasks may or may not be procedu-
ralised with an instruction that they be executed in
sequence. We will discuss different execution patterns
below.

Example 1: As a running example, we will consider
a non-demanding marine operation as an example: a
fishing trip by rowboat. An HTA analysis is shown
in Table I. The operation consists of four first-level
tasks, preparing the boat, going to the site, fishing,
and returning. Each phase is divided into a number of
subtasks.

There is no limit to the number of levels in the HTA
tree; it is merely a question of the desired level of detail.
A trivial task should not be subdivided just for the
sake of it. Some branches may require more levels than
others.

Our fishing example illustrates how subtasks some-
times should be executed in order, as in Phases 1 and 4,
and sometimes not. The tasks of Phases 2 and 3 must
be executed in parallel. In general, every task requires
an execution instruction, and where there are subtasks,

0. Get enough fish for dinner
Do in sequence:
1 Prepare boat
Do in sequence:
1.1 Take life jacket on
1.2 Load fishing gear
1.3 Untie moorings
2 Row to your favourite fishing site
Do in parallel:
3.1 Go to fishing site
3.2 Watch for other vessels
3 Catch enough fish
Do in parallel:
3.1 Fish until bucket is full
3.2 Monitor distance to cliffs
4 Return to quay
Do in sequence:
4.1 Go to the quay
4.2 Moor the boat
4.3 Unload the boat

TABLE I: HTA tree for a fishing trip.

bait hook [«~——— no

toss hook

rewind

unhook

ik

Fig. 2. A flow chart with subtasks for the fishing task.

this instruction explains how to use them. This descrip-
tion is often verbal, but Stanton [15] gives examples
both using verbal descriptions and flowcharts.

An example flowchart is shown in Figure 2, break-
ing Task 3.1 in Table I into subtasks. The rectangular
nodes represent operational tasks, to bait the hook, to
toss the hook into the sea, to rewind the line, and to un-
hook and slaughter fish if any is caught. The diamond
shaped nodes represent test or observation tasks, where
we need to check if certain conditions are true: checking
the distance to shore, in case we need to move further
away, and checking if we have sufficient catch to return
home. Finally the oval nodes represent transitions into
new tasks, either because the task is complete (green

Fig. 3. Simple state machine of an operation (HTA level 1).

Move away

Ongoing
Outbound

Fig. 4. Example of a hierarchical state machine.

Fishing

!

‘exit’ node) or because it is suspended for the purpose
of error recovery (amber node). This will be discussed
further in Section II-D.

C. State Machines

One of the most fundamental modelling techniques
in computer and software engineering is that of a state
machine.

Definition 1: A state machine is a directed graph,
with nodes called states and edges called transitions.
Each transition is labelled with a Boolean condition.

The states can be thought of as mutually exclu-
sive situations, and the transitions represent the event
where the system is brought from one state to another,
which happens when the label of the transition is true.
As a very simple example of a state machine, consider
an operation in Figure 3. This model corresponds to
the first level of HTA, with only one task defined. The
two states correspond to the operation being ongoing or
complete respectively. A single transition is included,
from ongoing to complete, corresponding to the event
that the operation goal be achieved.

Using additional levels from the hierarchical task
analysis, we will break states into smaller ones. To
follow the pattern from HTA, it is useful to use hierar-
chical state machine, as known for instance from UML.
Using the fishing example, we can break the Ongoing
state into substates as shown in Figure 4. The origi-
nal state Ongoing represents the union of the substates
Moored, Outbound, Fishing, and Homebound.

Each state in the state machine correspond to a task
in the HTA, which defines the plan to be executed in
the given state. The converse is not true. In Tasks 2
and 3, the two subtasks are executed concurrently, and
we cannot subdivide the corresponding states, Rowing
and Fishing, based on the HTA. In contrast, the Moored
and Homebound states should be subdivided, with sub-
states corresponding to subtasks of Phases 1 and 4.

From a practical viewpoint, it is very important not
to break the operation down into too small states. The
states should be small enough to allow a clear and con-
cise description of what needs to be done, reducing cog-
nitive stress. However, if the states are too small, cog-
nitive stress is caused by rapid transitions. Parallel
tasks, like row and keep watch, will be commonplace,

and they must be parallel, and therefore they must be
associated with one and the same state.

When flowcharts are used in HTA, these can easily be
mapped into state machines. In essence, the rectangu-
lar blocks in the flowchart can be viewed as substates in
the state machine, while the diamond nodes are pseudo-
states existing purely to handle multiple outgoing tran-
sitions. However, care must be taken to avoid over-
modelling. Even if we are able to model a certain task
using flowcharts and state machines, we should only do
it if it makes it easier for the crew to understand than
an instruction using natural language and figures.

D. Modelling undesirable situations

So far, we have only discussed linear state diagrams,
with a single path from a unique start to a unique end
state. Likewise, the HTA tree has assumed that ev-
erything goes according to plan. For real operations,
contingency planning is a critical part. Each contin-
gency plan consist of a set of conditions defining when
it comes into effect, and a task with the goal of return-
ing to a safe state, either by recovering to continue the
operation or aborting.

Contingency planning is very easy to model in the
state machine. For each contingency plan, we add a
state corresponding to the situation(s) where the plan
come into effect. Transitions into this state are labelled
with the appropriate conditions. A contingency plan
constitutes itself a task, which can be analysed using
HTA and mapped into a hierarchical state machine as
explained above. There will be transitions into the new
states corresponding to the conditions associated with
the contingency plan. It may be useful to colour code
the states, green for planned states, amber for states
where the contingency plan aim to recover, and red for
states where we abort.

The contingency plan is itself a task which can be
analysed in depth using HTA and consequently mapped
into a states and state transitions. Some contingency
plans may be complex, and require a large HTA tree to
elaborate. In the state machine, that will mean a long
path through multiple amber states before we recover
in a green state.

In the HTA tree, the contingency plans will be as-
sociated with some testing or monitoring task which
is used to identify the conditions for the plan to take
effect. The HTA easily becomes cluttered if all the con-
tingency plans are elaborated within the same tree, but
it is not a problem for the model to elaborate them as
separate trees and cross-reference.

Ezxample 2: As an example, we can return to the fish-
ing trip. In the Outbound state we keep watch for other
vessels. This is an example of monitoring a safety con-
dition. If a vessel is spotted on a collision course, we
transition into an amber state aiming to escape the col-
lision. If the evasive manoeuvre is successful, we tran-
sition back to the Outbound green state. Similarly, in
the Fishing state we keep watch to avoid getting too
close to the shore. If we do get too close, we enter an
amber state to move away.

E. Some features of a state

Every task in HTA implies some instruction about
how to execute the task, and this information must be
carried over to the state machine model. We have iden-
tified three commonplace task categories which can,
and should, be modelled:

1. Subtasks executed in sequence (Tasks 1 and 4).

2. Subtasks executed in any order.

3. Continuous monitoring in parallel with other tasks
(as in Tasks 2 and 3).

The first case is handled by elaborating the state ma-
chine, with one substate per subtask. In each substate
there is only one task eligible for execution and we pro-
ceed to the next subtask/substate when it is complete.

The second case could in theory be modelled in a
state machine with 2™ substates for n tasks, corre-
sponding to every combination of complete and incom-
plete tasks. This leads to unnecessary complexity. A
simpler solution is to introduce a task list (list of sub-
tasks) associated with the state. Think of the task list
as a check list to be completed by the captain. There
are no substates, and transition to the next state occurs
when all tasks are checked.

Case 3 commonly occurs in combination with other
cases, where some numbers, known as key indicators
(KI) must be monitored. These KI numbers may be
performance parameters or safety parameters. Any on-
board support software should obviously offer a user
friendly display of all KI-s defined in the plan. The set
of relevant KI-s may vary from state to state.

Example 3: Typical Kl-s for the Fishing state of the
example would be distance to land (safety parameter)
and amount of fish in the boat (performance parame-
ter).

Another fundamental concept in operational plans
are stop criteria, i.e. conditions where the operation
must be aborted. In the state machine model, this
specifies a transition into a red state. We can formalise
the definition as follows.

Definition 2: A stop criterion is defined as the label
of a transition from an amber or green state into a red
one.

Since not every detail can be formally modelled, we
expect every state to be accompanied by an instruction
sheet using natural language and figures.

F. Caveats

We have introduced the state machine as if we want
to complete the operational planning using HTA and
then transform it into a state machine. In practice, it
is probably a better idea to use both HTA and state ma-
chines together in planning, as two different views on
the same model. An HTA model designed without con-
cern of the state machine approach may be very hard
to translate, as HTA is very permissive, and subtask
instructions may be both complex and informal.

Two distinct model views is a potential strength
for planning. HTA emphasises what has to be done,
while the state machine emphasises the different cir-
cumstances of different situations. An important part

of operational planning should be the priorities, re-
quirements, and provisions in each situation, and state
machine thinking should support a focus on this. If
the HTA analyst keeps states and state transitions in
mind, it will give a better transformation into a state
machine, without diminishing the quality of the HTA
model.

The framework discussed offers the flexibility of
choosing between very detailed, formalised models and
coarser models supported by long instructions in nat-
ural language. A major challenge will be to find the
right balance, and use detailed, formal models when it
aids understanding and not when it obstructs it.

We have not decided on who should be the final ar-
biter on when a state transition occurs. By suggest-
ing automatic reading of key indicators from other on-
board systems, combined with well-defined state tran-
sition criteria, we have enabled automatic state transi-
tions. Traditional thinking (for good reasons) dictates
that it is the captain who orders the execution of a con-
tingency plan, corresponding to the transition into a
red or amber state. Automating this decision may be a
radical choice which should be made lightly. Undoubt-
edly, the system should monitor the conditions related
to transitions into red and amber states to alert the
crew, but the state transition decision may be left to
the captain. Transition into green states is indirectly
under manual control, since most of the tasks must be
checked off manually. Still it could be useful to have a
final transition approval from the captain.

III. SOFTWARE

The state machine model of the operational plans
is the foundation for creating situation-aware software
for operational support. We propose a simple software
architecture, and a prototype to demonstrate that the
core concepts work. The emphasis here is on a support
system to be used during the execution of the operation.
A presentation system for use in briefing and debriefing
would be similar, and so would an educational tool for
use with simulator training. A planning tool, to pre-
pare operational plans, could also be built on the same
core, but we have not at this stage considered editing
interfaces.

To get a clean and comprehensible architecture, we
have sought to limit dependencies on existing on-board
systems. This is known as low coupling in software en-
gineering. For maximum functionality, it is clear that
an on-board, situation-aware planning tool should re-
ceive data from other on-board systems. Most obvious
is integration with alarm systems (IAS). In fact, one
could envision the situation-aware tool with intelligent
algorithms interpreting alarms in context. This is left
for later stages of development.

A. Architecture

The proposed software architecture is depicted in
Figure 5, using a typical three-tier framework. The
Static Model Layer handles the operational plan as
described prior to the operation, using a state ma-

User Interface

o

<— Situation-aware Middleware
| Seniomiae |
DB

Fig. 5. Software architecture

chine model as discussed before. The middle layer is
situation-aware, or state aware, keeping track of what
state is applicable at any point in time, as well as the
status of any tasks and task lists, stop criteria, transi-
tion conditions, as well as key indicators. The top layer
is the user interface. Different user interfaces may be
created for different purposes. We may want to provide
each crew member with his own view, tailor made for
his or her needs.

We have indicated communication with some exter-
nal systems. Key indicators must be read from other
on-board systems, but it should be noted that this in-
teraction is read only; so interference is limited. The
log is a suggested feature; the idea is that task comple-
tion and state transitions be logged. This could be a
dedicated service for this system, or it could feed log-
ging data back to existing on-board systems. The SQL
database is purely an implementational convenience,
and does not add functionality; it is merely a simple
way to store the model.

A model-view-controller (MVC) architecture should
be used, to allow multiple and different views with con-
sistent data about the current state of the operation.
The model is in the State-Aware Layer and the view
in the User Interface Layer. Controllers may appear
both in the User Interface Layer, taking input from the
user, and in the State-Aware Layer, taking input from
sensors and other on-board systems. Thus state tran-
sitions may be either manual or automatic.

The State-Aware Layer includes objects representing
each of the conditions associated with state transitions,
recording the current truth value. Design patterns [4]
provide a structured and standardised approach to sup-
porting certain key features in the architecture. The
condition objects should implement the Observer pat-
tern so that the state-aware logic can observe them and
decide when the state changes. The Specification de-
sign pattern can be used to allow composition of con-
ditions using Boolean arithmetic, in which case com-
pound condition objects can observe their constituent
conditions to change their truth value as appropriate.
Tasks and task lists can be viewed as a special case of
conditions, which are true when the user has checked
them as complete.

B. Prototype

We have created a prototype demonstrating the core
ideas in the work. Figure 6 shows the prototype view,
intended for the captain. The operational plan as a
state machine is defined in a simple XML file which

is loaded into an SQL database by the Static Model
Layer.

The current view comprises four panes, from left to
right: a task list, a list of risks, key indicators, and an
info pane. The task list shows the name of the current
state and a list of tasks to be executed in any order to
achieve the goal of the state. Each task is represented
by one object in the GUI and a model object in the
State-Aware Layer, according to the MVC architecture.
The GUI object is a view, coloured green if the task
is complete and white otherwise, using the Observer
pattern to know when to change colour. It is also a
controller, telling the model to check the task when
clicked.

When all the tasks in the current state are completed,
the State-Aware Layer will notice a state transition.
Again, this will be detected by the view using the Ob-
server pattern, and the pane will change to show the
new state.

The key indicators are shown as a bar chart, repre-
senting readings from ship sensors. In the prototype,
these sensors are simply mimicked by random processes
for illustration. Each state in the model defines a sep-
arate set of key indicators which should be monitored
manually in that state. Thus the key indicator pane
will change accordingly upon a state transition.

The risks correspond to adjacent amber and red
states in the state machine, giving an impression of
conditions that must be avoided in the current state.
This also changes automatically, when a state transi-
tion happens in the State-Aware Layer. Finally, the
info pane is used to display details about a state or
task when the associated ‘info’ button is pressed. Cur-
rently, only a dummy descriptive text is displayed, but
it is anticipated that a one-page procedure, say in PDF,
may be provided at a later stage.

There is one major caveat, namely the handling of
misclicks in the user interface. A completed task can-
not be uncompleted, which is logical in the model, but
does not consider misclicks. This may trigger immature
state transitions. The problem may be handled in two
different ways, either at the model or the implementa-
tion level. At the model level, we could introduce er-
ror correction transitions in the state machine, with or
without intermediate amber states. At the implementa-
tion level we could add extra prompts and safety mech-
anisms to correct misclicks immediately. The prob-
lem is clearly soluble, but further research is needed
to choose the approach.

IV. CONCLUSIONS AND OPEN PROBLEMS

We have given a proof of concept, showing how an op-
erational plan can be modelled in a software compatible
way, and how software can be designed to structure and
visualise key elements from the plan. The significance
of this work is in the linking of operational modelling
and software modelling, establishing a common foun-
dation of understanding for operational planners, ship
officers, and software engineers. This helps us define
key open problems for further research, both of theo-

Enable DP

Stop criterion -

| Crew on posts |-
Permission to enter -

Key Indicators All crew take their posts and

report to bridge.

Fig. 6. Prototype screen shot.

retical and of practical interest.

Armed with the proposed modelling techniques, we
can continue the study of operational plans, providing
structure and identifying common patterns and key pa-
rameters. It is an acknowledged problem that highly
complex, textual plans are extremely hard to validate,
read, or use. More structured plans will be a great
tool for training and for briefing, as well as a guide for
software implementation.

The underlying modelling framework of the system
also requires further research. The HTA and state ma-
chines discussed in the paper provide only a coarse
structure for the plan. We need a careful review of
real operational plans, both to assess the suitability
of the current framework, and to identify any criti-
cal aspects which require additional modelling features.
Other modelling frameworks for operations should be
explored, e.g. SADT and IDEFO, assessing if they can
be wholly or partially integrated in our framework, with
transformation into software models.

In particular, the modelling framework must be ex-
tended to define multiple roles corresponding to differ-
ent crew members. It is known that this can be done
in HTA, and there are also software modelling tech-
niques which support it. Further research is needed to
formalise it and to elaborate the transformation. Ul-
timately, a hierarchy is required, with multiple teams
(e.g. ships) taking part in a project, and multiple roles
(crew members) within each team. The need to for a
two-level hierarchy, headed by a project leader and a
number of team leaders (e.g. captains) is obvious. It
may or may not be necessary to generalise for an arbi-
trary number of levels.

With respect to the software tool, a better under-
standing is needed of the work situation of the ship’s
crew. Two questions are obviously crucial. What infor-
mation is required in each conceivable situation? And
how should the required information be presented?

On the theoretical side, it would be useful to for-
malise the modelling framework, with well-defined
metamodels. This could further lead to a useful amal-
gamation with modelling techniques from other do-
mains, such as HCI, UI design, or business process mod-
elling.

(3]

(4]

(5]

[6]

[7]

(8]

(9]

(10]

(11]
(12]

(13]

(14]

(15]

REFERENCES

Magne V. Aarset. Kriseledelse. Fagbokforlaget, 2010.
Rémi Bastide. An integration of task and use-case meta-
models. In Julie A. Jacko, editor, HCI (1), volume 5610
of Lecture Notes in Computer Science, pages 579-586.
Springer, 2009.

David Embrey, Claire Blackett, Philip Marsden, and Jim
Peachey. Development of a human cognitive workload as-
sessment tool. Technical report, Human Reliability Asso-
ciates Ltd., July 2006. MCA Final Report.

Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides. Design Patterns. Addison-Wesley, Boston, MA,
January 1995.

B Gauss, M Roétting, and D Kersandt. Naridas — evaluation
of a risk assessment system for the ship’s bridge. In Hu-
man Factors in Shop Design, Safety and Operation. RINA
- The Royal Institution of Naval Architects. International
Conference., March 2007. London, UK.

Uwe Glésser, Piper Jackson, Ali Khalili Araghi, and
Hamed Yaghoubi Shahir. Intelligent decision support for
marine safety and security operations. In Intelligence and
Security Informatics (ISI), 2010 IEEE International Con-
ference on, pages 101 —107, May 2010.

Uwe Gléasser, Piper Jackson, Ali Khalili Araghi, Hans Wehn,
and Hamed Yaghoubi Shahir. A collaborative decision sup-
port model for marine safety and security operations. In
Mike Hinchey, Bernd Kleinjohann, Lisa Kleinjohann, Pe-
ter A. Lindsay, Franz J. Rammig, Jon Timmis, and Marilyn
Wolf, editors, Distributed, Parallel and Biologically Inspired
Systems, volume 329 of IFIP Advances in Information and
Communication Technology, pages 266—277. Springer Berlin
Heidelberg, 2010.

Michelle Rita Grech, Tim John Horberry, and Thomas
Koester. Human Factors in the Maritime Domain. CRC
Press, 2008.

Hans Hederstrom, Diethard Kersandt, and Burkhard
Miiller. Task-oriented structure of the navigation process
and quality control of its properties by a nautical task man-
agement monitor (ntmm). FEuropean Journal of Navigation,
10(3), December 2012.

Lee A. Luft, Larry Anderson, and Frank Cassidy. Nmea
2000 a digital interface for the 21st century. In Institute of
Navigation Technical Meeting, January 2002.

Margareta Litzhoft. The technology is great when it works.
PhD thesis, 2004.

Jonathan M. Ross. Human Factors for Naval Marine Ve-
hicle Design and Operation. Ashgate, 2009.

Bran Selié. Abstraction patterns in model-based engineer-
ing, February 2011. Keynote slides from ModProd 2011 at
http://www.modprod.liu.se/MODPROD201171=en.

Steve Spitzer, Lee A. Luft, and David Morchhauser. Nmea
2000, past, present and future. In RTCM Annual Assembly
Meeting and Conference, May 2009.

Neville A. Stanton. Hierarchical task analysis: Develop-
ments, applications, and extensions. Applied Ergonomics,
37(1):55 — 79, 2006. Special Issue: Fundamental Reviews.

