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Abstract Separating codes have recently been applied in the construc-
tion of collusion secure fingerprinting schemes. They are related to other
combinatorial concepts like intersecting codes, superimposed codes, hash-
ing families, and group testing. In this paper we study some good, binary
asymptotic constructions of such codes.
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1 Introduction

Copyright violations are of increasing concern to artists and distributors,
as production of copies get simpler and cheaper for common people. Dig-
ital fingerprinting and traitor tracing is a technique to trace guilty users
or pirates when illegal copies are found.

A digital fingerprinting scheme [BS98] marks every copy sold with an
individual mark, such that if one pirate reproduces his copy, the illegal
copies may be traced back to him. In traitor tracing schemes [CFN94,CFNP00],
a similar technique is applied to the decryption keys of a broadcast en-
cryption system. The fingerprint must be hidden such that a user cannot
change it by inspecting only his own copy.

If several pirates collude, they can compare their copies, and identify
portions where they differ, which must then be part of the fingerprint.
Thus having identified parts of the fingerprint, they can also change it,
producing a hybrid copy which cannot trivially be traced. It is generally
assumed that in each mark or symbol of the fingerprint, the pirate coali-
tion can choose the symbol from either of their copies, but nothing else.
? Both authors were supported by the Norwegian Research Council under grant num-
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Collusion secure fingerprinting schemes are designed to trace at least one
pirate when a coalition is guilty.

We view the fingerprints as codewords over some alphabet Q. The
fingerprints the pirates are able to forge form the so-called feasible set,
defined as

F (T ) := {(v1, . . . , vn) ∈ Qn | ∀i, 1 ≤ i ≤ n, ∃(a1, . . . , an) ∈ T, ai = vi},

where T is the set of fingerprints held by the pirates, Q is the alphabet,
and n is the length of a fingerprint. If the code of valid fingerprints still
makes it possible to trace at least one guilty pirate out of a coalition of
size t or less, we say that the code has the t-identifiable parent property (t-
IPP). If the pirates are able to forge the fingerprint of an innocent user, we
say that this user is framed. Codes which prevent framing by t pirates are
called t-frameproof or (t, 1)-separating codes. A code is (t, t)-separating,
or t-secure frameproof, if no two disjoint coalitions of size t or less can
produce the same fingerprint.

Unfortunately (combinatorial) t-IPP codes are possible only for huge
alphabets. Therefore it is interesting to study probabilistic t-IPP, where
we permit a small non-zero probability ε of incorrect tracing. Recently,
(t, t)-separating codes were used to construct probabilistic t-IPP codes
[BCE+01,BBK03]. In [Sch03] it was proved that the best known asymp-
totic (2, 2)-separating codes is also probabilistic 2-IPP.

The case of (2, 2)-separation was introduced by Sagalovich in the con-
text of automata: two such systems transiting simultaneously from state
a to a′ and from b to b′ respectively should be forbidden to pass through a
common intermediate state. A state of the system in this case is an n-bit
binary string, and the moving from one state to another is obtained by
flipping bits one by one. Only shortest paths from the old to the new state
are allowed, so moving from a to a′ will only involve flipping bits where
a and a′ differ. The set of valid states Γ forms a (2, 2)-separating sys-
tem, if for any four distinct states, a, a′, b, and b′ from Γ , the transitions
a → a′ and b → b′ cannot pass through any common state. Sagalovich’s
contribution on this topic is substantial and has been surveyed in [Sag94].

The design of self-checking asynchronous networks has been a chal-
lenging problem. Friedmann et al. [FGU69] have shown that the uni-
code single-transition-time asynchronous state assignment corresponds to
(2, 2)- and (2, 1)-separating systems. The coding problem for automata
states also motivated research on (3, 3)-SS [Ung69]. In [Sch03] it was
proved that the best known asymptotic (2, 2)-separating codes is also 2-
IPP.
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Separating codes have also been studied in a set-theoretic framework,
e.g. [KS88], and Körner [Kör95] gives a series of problems equivalent to
(2, 1)-separation.

In this paper we present new binary, asymptotic constructions of (t, u)-
separating codes. We compute the rates for (t, u)-SS when 2 ≤ t, u ≤ 5
find that our constructions improve on previous ones. The constructions
work for arbitrary t and u, but for (t, 1)-SS previous constructions based
on designs [CE00] are still the best.

2 Preliminary definitions and bounds

Let Q be an additive group (often a field) called the alphabet, and denote
by q its order. Let V be the set of n-tuples over Q. An (n,M)q code Γ is
anM -subset Γ ⊆ V. If Q is a field of q elements and C is a k-dimensional
subspace C 5 V, then we say that C is a [n, k]q (linear) code. We will
refer to the elements of V as words. Let d1 and m1 denote respectively
the minimum and maximum (Hamming) distance of the code.

Definition 1. A pair (T,U) of disjoint sets of words is called a (t, u)-
configuration if #T = t and #U = u. The separating weight θ(T,U) is
the number of positions i, where every word of T is different from any
word of U on position i.

The (t, u)-separating weight θt,u(C) of a code C, is the least separating
weight of any (t, u)-configuration of the code. If θt,u(C) > 0, then we say
that C is a (t, u)-separating code or a (t, u)-SS (separating system).

In earlier works on watermarking and fingerprinting, (t, t)-separating
codes have been called t-SFP (secure frameproof) [SW98,STW00,SSW01].
The current terminology appears to be older though [Sag94]. It is well
known that codes with sufficiently large minimum distance are separating
[Sag94].

Lemma 1. If Γ is a code with minimum distance d1 and maximum dis-
tance m1, then 2θ2,1 ≥ 2d1 −m1.

Proof. Let (c;a,b) be a (2, 1)-configuration. Letting the three words be
rows of a matrix, we have essentially four types of columns: Type 0 where
all the elements are equal, Type I where a or b differs from the two
others, Type A where c differs from the two others, and Type B with
three different elements. Let vi denote the number of elements of Type i.

Consider the sum

Σ := w(c− a) + w(c− b) ≥ 2d1.
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Observe that Σ = 2(vA + vB) + vI. Clearly we have θ(c;a,b) = vA + vB,
and w(a− b) = vB + vI, so vI ≤ m1, and the theorem follows.

Remark 1. In the binary case, there are no columns of Type B, and there-
fore

2θ(c;a,b) = w(c− a) + w(c− b)− w(a− b),

and consequently we get equality θ2,1 = d1 − m1/2 if and only if there
are three codewords a,b, c such that w(c − a) = w(c − b) = d1 and
w(b− a) = m1.

A similar argument also gives the following result [Sag94].

Theorem 1. Let Γ be a code with minimum distance d1 and maximum
distance m1. Then 4θ2,2 ≥ 4d1 − 2m1 − n. If Γ is linear, then 4θ2,2 ≥
4d1 − 3m1.

Proposition 1. Any (n,M, d1)q code Γ has θt,u ≥ n− tu(n− d1).

Corollary 1. An (n,M, d1)q code Γ is (t, u)-separating if d1/n > 1 −
1/(tu).

Proof. Consider any (t, u)-configuration (T,U) from Γ , and define the
sum

Σ :=
∑

(x,y)∈T×U

d(x, y).

This is the sum of (T,U) distances in the code, so Σ ≥ tud1. Each coordi-
nate can contribute at most tu to the sum Σ, but if any coordinate does
contribute that much, then the configuration is separated on this coordi-
nate. Hence we get that Σ ≤ n(tu− 1) + θt,u. The proposition follows by
combining the upper and lower bounds and simplifying.

It must be noted that, to get infinite families of separating codes with
good rate, the alphabet size q grows extremely rapidly in the t and u, due
to the Plotkin bound. On the other hand, for sufficiently large alphabets,
we can use the following lemma by Tsfasman [Tsf91].

Theorem 2 (The Tsfasman Codes). For any α > 0 there are con-
structible, infinite families of codes A(N) with parameters [N,NR,Nδ]q
for N ≥ N0(α) and

R+ δ ≥ 1− (
√
q − 1)−1 − α.
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Infinite families of separating codes over small alphabets can be built
by concatenation [Alo86]. The outer codes for concatenation will very
often be Tsfasman codes.

Definition 2 (Concatenation). Let C1 be a (n1, Q)q and let C2 be an
(n2,M)Q code. Then the concatenated code C1 ◦C2 is the (n1n2,M)q code
obtained by taking the words of C2 and mapping every symbol on a word
from C1.

Proposition 2. Let Γ1 be a (n1,M)M ′ code with minimum (t, u)-separa-
ting weight θ(1)

t,u , and let Γ2 be a (n2,M
′)q code with separating weight θ(1)

t,u .
Then the concatenated code Γ := Γ2 ◦ Γ1 has minimum separating weight
θt,u = θ

(1)
t,u · θ

(2)
t,u .

Note that Γ will usually not satisfy the requirements of Proposition 1.

3 Intersection gives separation

The first relationship between intersecting codes and separating codes ap-
peared in [BR80], and further links have been explored in [CELS03b,CELS03a]
(see also [CS03]).

Definition 3. A linear code C of dimension k ≥ t is said to be t-wise
intersecting if any t linearly independent codewords have intersecting sup-
ports. If t > k, we say that C is t-wise intersecting if and only if it is
k-wise intersecting.

It is easy to verify that any t-wise intersecting code is also (t − 1)-wise
intersecting. The following relation between intersection and separation is
well known [BR80,CELS03b].

Proposition 3. For a linear, binary code, is

1. 2-wise intersecting if and only if it is (2, 1)-separating, and
2. 3-wise intersecting if and only if it is (2, 2)-separating.

Due to this proposition, we can use many bounds on separating codes
as bounds on intersecting codes. For instance, by Theorem 1, every code
with 4d > 3m is 3-wise intersecting.

It was shown in [CS03], that if C is a (t, u)-SS, then any ῑ(t, u) code-
words must be linearly independent, where

ῑ(t, u) :=


t+ u, when t ≡ u ≡ 1 (mod 2),
t+ u− 1, when t 6≡ u (mod 2),
t+ u− 2, when t ≡ u ≡ 0 (mod 2).
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If the codewords are taken as a non-linear subcode of a (t + u − 1)-wise
intersecting code, this condition is also sufficient. The following theorem
is from [CELS03a], but we include a proof for completeness.

Theorem 3. Let i, j ≥ 1 be integers such that t := i+j−1 ≥ 2. Consider
a t-wise intersecting, binary, linear code C, and a non-linear subcode Γ ⊆
C. The code Γ is (i, j)-separating if any ῑ(i, j) non-zero codewords are
linearly independent.

Proof. We start by proving that any t + 1 codewords being linearly in-
dependent is sufficient for Γ to be (i, j)-separating. This holds as the
theorem states irrespectively of the parities of i and j. Afterward we will
strengthen the result in the cases where i and j are not both odd.

Choose any (two-part) sequence Y ′ of t+ 1 codewords from Γ ,

Y ′ := (a′1, . . . ,a
′
j ; c
′
1, . . . , c

′
t+1−j).

We have that Y ′ is (j, t+ 1− j)-separated if and only if Y := Y ′− c′t+1−j
is. Hence it suffices to show that

Y = (a1, . . . ,aj ; c1, . . . , ct−j ,0)

is (j, t+ 1− j)-separated.
Since the t+ 1 codewords of Y ′ are linearly independent, so are the t

first codewords of Y . Now, consider

X := {a1 + c1, . . . ,a1 + ct−j ;a1, . . . ,aj},

which is a set of linearly independent codewords from C, and hence all
non-zero on some coordinate i. Since a1 + cl is non-zero on coordinate i,
cl must be zero for all l. Hence Y , and consequently Y ′, is separated on
coordinate i.

This completes the first step. In the case where i 6≡ j (mod 2), we get
that t is even, and consequently the t first codewords of Y are linearly
independent whenever any t words of Y ′ are. Therefore it is sufficient that
any t codewords of Γ be linearly independent.

Finally, we consider the case where i and j are both even. We shall
again show that Y ′ is separated. If all the t + 1 words of Y ′ are linearly
independent, then we are done by the first part of the proof. By assump-
tion, we know that any t − 1 words are linearly independent. This gives
two cases to consider:

1. c′t+1−j is the sum of the t first words, which are linearly independent.
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2. c′t−j is the sum of the t − 1 first words and c′t+1−j is independent of
the others.

Let Y ′, Y , and X be defined as before. Consider the first case first. Any
t−1 non-zero words of Y are linearly independent, while all the t non-zero
words sum to 0. Hence, the only linear independence found between the
elements of X is that

0 = b1 + . . .+ bt−j + a2 + . . .+ aj , (1)

where bi = ci + a1. It follows that the t − 1 first words of X intersect,
since C is t-wise intersecting. Thus there is a position l, where ai is 1 for
i = 1, . . . , j − 1 and ci′ is zero for i′ = 1, . . . , t− j. Furthermore, aj is one
in position l by (1). Hence Y is separated.

In the second case, we get that the t non-zero words of Y are linearly
independent. Thus the result follows like the first part of the proof.

It is perhaps not obvious how these propositions may be used to con-
struct non-linear separating codes with a reasonable rate. The following
lemma [CELS03b] does the trick.

Lemma 2. Given an [n, rm] linear, binary code C, we can extract a non-
linear subcode Γ of size 2r such that any 2m non-zero codewords are lin-
early independent.

Proof. Let C ′ be the [2r−1, 2r−1− rm, 2m+1] BCH code. The columns
of the parity check matrix of C ′ make a set Γ ′ of 2r − 1 vectors from
GF(2)rm, such that any 2m of them are linearly independent. Now there
is an isomorphism φ : GF(2)rm → C, so let Γ = φ(Γ ′) ∪ {0}.

There is a sufficient condition for intersecting codes, resembling the
results we have for separating codes in Proposition 1 and Theorems 1
and 1 [CZ94].

Proposition 4. Let C be a binary linear code. Any t independent code-
words intersect in at least d1 −m1(1− 21−t) coordinate positions.

Remark 2. The code C has t-wise intersection weight exactly d1−m1(1−
21−t) if and only if there are subcodes D0 ⊆ D1 ⊆ C such that D0 has
dimension t− 1 and contains 2t−1− 1 words of maximum weight, and D1

has dimension t containing 2t−1 words of minimum weight.
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4 Kasami codes

Let Tm denote the Froebenius trace from GF(qm) to GF(q), defined as

Tm(x) =
m−1∑
i=0

xq
i
.

It is well-known that

Tm(x+ y) = Tm(x) + Tm(y),

Tm(x) = Tm(xq),

and if x runs through GF(qm), then Tm(x) takes each value in GF(q)
exactly qm−1 times. The original Kasami code is a binary code, so let
q = 2 and write Q = 2m.

Definition 4 (The Kasami Codes). The [22m − 1, 3m, 22m−1 − 2m−1]
Kasami code is the set

Km =
{
c(a, b) : a ∈ GF(Q2), b ∈ GF(Q)

}
,

where

c(a, b) =
(
T2m(ax) + Tm(bxQ+1) : x ∈ GF(Q2)∗

)
.

The Kasami codes have three different non-zero weights, given by the
following lemma [HK95].

Lemma 3. The weight of a codeword c(a, b) ∈ Km is given by

w(c(a, b)) =


22m−1 − 2m−1, if b 6= 0 and Tm(aQ+1/b) =1,

22m−1 + 2m−1, if b 6= 0 and Tm(aQ+1/b) =0,

22m−1, if b = 0 and a 6= 0,

0, if b = 0 and a = 0.

(2)

Using Proposition 4, we get the following result.

Proposition 5. The Kasami code Km is m-wise intersecting, and its t-
wise intersection weight is at least

`t(Km) ≥ 2m(2m−t − 1) + 2m−t.



Separating and Intersecting Properties of BCH and Kasami Codes 9

This implies that the Km is a (2, 1)-SS for m ≥ 2 and a (2, 2)-SS for
m ≥ 3. For t = 2, the above bound is tight as the following proposition
shows. It can be shown by exhaustive search that the bound is tight for
t = m = 3 as well, but it is an interesting open problem whether the
bound is tight in general.

Proposition 6. The Kasami code Km has (2, 1)-separating weight

θ2,1 = max{0, (2m − 3)2m−2}.

Proof. Recall that θ2,1 ≥ d1 −m1/2 = (2m − 3)2m−2. This is negative if
and only if m = 1. Observe that K1 contains all words of length 3, and
thus has θ2,1 = 0, as required.

If m ≥ 2, we get that θ2,1 > 0, and by Remark 1 it remains to prove
that there are are two codewords a and b of minimum weight such that
a + b has maximum weight. This is fulfilled for a = c(γb, b2) and b =
c(γb, f2b2) if Tm(γQ+1) = Tm(γQ+1/f2) = 1. Such an f exists as long as
m ≥ 2.

5 BCH codes

Several good (t, u)-separating codes may be constructed from intersecting
codes and columns from the parity check matrices of BCH codes. In the
tables at the end of this section, we use non-linear subcodes of dual BCH
codes as inner codes.

5.1 Finite constructions of intersecting codes

The intersecting properties of the duals of 2-error-correcting BCH codes
were first pointed out in [CZ94]. In the sequel, we describe the intersecting
properties of arbitrary dual BCH codes.

In MacWilliams and Sloane [MS77], we find the following lemma.

Lemma 4. Let C be a BCH code of length 2m − 1 and designed distance
d′ = 2e + 1, where 2e − 1 < 2dm/2e + 1. For any non-zero words in C⊥,
the weight w lies in the range

2m−1 − (e− 1)2m/2 ≤ w ≤ 2m−1 + (e− 1)2m/2.

By using Proposition 4, we get the following result.
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Proposition 7. The dual of a [2m − 1,me] BCH code with designed dis-
tance d′ = 2e+ 1 has t-wise intersection weight

`t ≥ 2m−t + (e− 1)2m/2+1−t − (e− 1)2m/2+1

= 2m/2+1
(
2m/2−t−1 − (e− 1)(1− 2−t)

)
.

Corollary 2. The dual of the e-error-correcting BCH code with parame-
ters [2m − 1,me], is t-wise intersecting if

m > 2
(
1 + log(e− 1) + log(2t − 1)

)
.

The bounds in Lemma 4 are not necessarily tight, and for e = 2, 3,
the exact maximum and minimum weights are known [Kas69].

Lemma 5. Let C be a 2-error-correcting BCH code of length 2m−1. Then

d1 = 2m−1 − 2bm/2c,

m1 = 2m−1 + 2bm/2c.

Proposition 8. The dual of the 2-error-correcting BCH code with param-
eters [22t+1 − 1, 4t + 2, 22t − 2t], is t-wise intersecting, with intersecting
weight `t ≥ 2.

This proposition is a direct consequence of the preceding lemma [CZ94].

Lemma 6. Let C be a 3-error-correcting BCH code of length 2m − 1 for
m ≥ 4. Then

d1 = 2m−1 − 2dm/2e,

m1 = 2m−1 + 2dm/2e.

Proposition 9. The punctured dual of the 3-error-correcting BCH code
with parameters [22t+2− 1, 6t+ 6], is t-wise intersecting, with intersecting
weight `t ≥ 4.

5.2 Infinite families of intersecting codes

The following lemma was found in [CZ94].

Lemma 7. Let C1 be an [n1, k1, d1]q code with q = 2k2 and minimum
distance d1 > n1(1 − 21−t). Let C2 be an [n2, k2, d2] binary t-wise inter-
secting code. Then the concatenation C1◦C2 is a binary t-wise intersecting
[n1n2, k1k2, d1d2] code.
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Lemma 8. There are constructive infinite sequences of t-wise intersecting
binary codes with rates arbitrarily close to

R
(2)
t =

(
21−t − 1

22t+1 − 1

)
2t+ 1

22t − 1
= 22−3t(t+ o(t)),

R
(3)
t =

(
21−t − 1

23t+3 − 1

)
3t+ 3

22t+1 − 2
= 2−3t(3t+ o(t)).

Proof. By concatenating geometric [N,K,D]q codes from Theorem 2 sat-
isfying D > N(1− 21−t) with q = 24t+2, and with a rate arbitrarily close
to 21−t − 1/(

√
q − 1), with the [22t+1 − 2, 4t + 2, 22t − 2t − 1] code of

Proposition 8, we obtain the result.

5.3 Constructions of separating codes

There are two basic techniques for constructing asymptotic separating
codes from intersecting codes.

Technique I uses a finite intersecting [n, k] code C ′ as a seed. Then a
non-linear subcode is extracted from C ′ to form an separating inner code
CI . Finally, CI is concatenated with a separating Tsfasman code CO. The
rate is given by

RI =
logQ

n

(
1

uv
− 1√

Q− 1

)
, (3)

where Q = q2 ≤ 22k/ῑ(u,v) is as large as possible with q a prime power.
Technique II uses a finite intersecting code CI as a seed, which is

concatenated with a Tsfasman code with minimum distance at least (1−
21−t) in concordance with Lemma 7, to form an asymptotic intersecting
code C ′. The asymptotic separating code is a non-linear subcode of C ′.
The resulting rate is

RII =
k

n

(
22−u−v − 1

2k/2 − 1

)
2

ῑ(u, v)
, (4)

provided k is even. Otherwise 2k is replaced by Q = q2 ≤ 2k where q is
the largest possible prime power.

Comparing (3) and (4), we see that the difference is in the parenthe-
sised expression. Except when t ≤ 3, we have 22−u−v > 1/uv which tend
to give Technique I a better rate. However Technique II uses a larger al-
phabet for the outer code, which tends to decrease the penalty factor and
hence improve the rate of the outer code.
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The following proposition gives the rates obtained when Technique II
is applied on the duals of BCH(2) and BCH(3). It is easy to check that
RII

2 > RII
3 (except for the degenerate case u = v = 1).

Proposition 10. There are constructive infinite sequences of binary (u, v)-
separating codes of rate

RII
2 (u, v) =

4(u+ v)− 2

ῑ(u, v)
(
22(u+v−1) − 1

) (22−u−v − 1

22(u+v)−1 − 1

)
≥ 2−3(u+v−2)(1 + o(1)),

RII
3 (u, v) =

3(u+ v)

ῑ(u, v)(22(u+v−1) − 1)

(
22−u−v − 1

23(u+v) − 1

)
.

(u, v) m [n, k] K inner rate outer rate total rate
(2, 2) 7 [126, 14] 14 1.111 · 10−1 2.421 · 10−1 2.690 · 10−2

(2, 3) 9 [510, 18] 9 1.666 · 10−2 1.111 · 10−1 1.851 · 10−3

(2, 4) 11 [2046, 22] 11 5.304 · 10−3 1.012 · 10−1 5.367 · 10−4

(2, 5) 13 [8190, 26] 8 9.768 · 10−4 3.333 · 10−2 3.256 · 10−5

(3, 3) 11 [2046, 22] 7 3.382 · 10−3 1.111 · 10−2 3.757 · 10−5

(3, 4) 13 [8190, 26] 8 9.768 · 10−4 1.667 · 10−2 1.628 · 10−5

(4, 4) 15 [32766, 30] 10 3.052 · 10−4 3.024 · 10−2 9.230 · 10−6

Table 1. Good (u, v)-SS from BCH(2).

(u, v) m [n, k] K inner rate outer rate total rate
(2, 2) 8 [252, 24] 24 9.524 · 10−2 2.498 · 10−1 2.379 · 10−2

(2, 3) 10 [1020, 30] 15 1.471 · 10−2 1.611 · 10−1 2.369 · 10−3

(2, 4) 12 [4092, 36] 18 4.399 · 10−3 1.230 · 10−1 5.412 · 10−4

(2, 5) 14 [16380, 42] 14 8.547 · 10−4 9.213 · 10−2 7.874 · 10−5

(3, 3) 12 [4092, 36] 12 2.933 · 10−3 9.524 · 10−2 2.793 · 10−4

(3, 4) 14 [16380, 42] 14 8.547 · 10−4 7.546 · 10−2 6.450 · 10−5

(3, 5) 16 [65532, 48] 12 1.831 · 10−4 5.079 · 10−2 9.301 · 10−6

(4, 4) 16 [65532, 48] 16 2.442 · 10−4 5.858 · 10−2 1.430 · 10−5

(4, 5) 18 [262140, 54] 13 4.941 · 10−5 3.864 · 10−2 1.909 · 10−6

(5, 5) 20 [1048572, 60] 12 1.144 · 10−5 2.413 · 10−2 2.761 · 10−7

Table 2. Good (u, v)-SS from BCH(3).
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For Technique I, we do not obtain such nice closed form formulæ,
because we do not have a nice expression for the alphabet size Q of the
outer code.

In Table 1 and 2, we present some good separating codes from duals of
BCH(2) and BCH(3) with Technique I. The constructions with BCH(2)
are known from [CES01,CS03], while the BCH(3)-constructions are new.
The symbol K denotes the log-cardinality of the inner code. For big u
and v, the inner code resulting from BCH(2) are so small that we do not
get a positive rate for the outer code. This could have been amended by
increasing m, but better results are obtained by increasing e. Therefore
these codes are omitted from Table 1.

Technique II Technique I
(u, v) BCH(2) BCH(3) BCH(2) BCH(3) BCH(5)
(2, 2) 2.690 · 10−2 2.379 · 10−2 2.690 · 10−2 2.379 · 10−2

(2, 3) 2.171 · 10−3 1.838 · 10−3 1.851 · 10−3 2.369 · 10−3 2.026 · 10−4

(2, 4) 3.334 · 10−4 2.749 · 10−4 5.367 · 10−4 5.412 · 10−4 4.045 · 10−5

(2, 5) 3.294 · 10−5 2.671 · 10−5 3.256 · 10−5 7.874 · 10−5 6.324 · 10−6

(3, 3) 2.223 · 10−4 1.833 · 10−4 3.757 · 10−5 2.793 · 10−4 2.396 · 10−5

(3, 4) 3.294 · 10−5 2.671 · 10−5 1.628 · 10−5 6.450 · 10−5 5.270 · 10−6

(3, 5) 3.570 · 10−6 2.861 · 10−6 0 9.301 · 10−6 8.269 · 10−7

(4, 4) 4.759 · 10−6 3.815 · 10−6 9.230 · 10−6 1.430 · 10−5 1.105 · 10−6

(4, 5) 5.062 · 10−7 4.023 · 10−7 0 1.909 · 10−6 1.669 · 10−7

(5, 5) 5.660 · 10−8 4.470 · 10−8 0 2.761 · 10−7 2.969 · 10−8

Table 3. Some good (u, v)-separating codes from duals of BCH codes.

In Table 3, we can compare the constructions for Techniques I and II.
Technique I using BCH(3) gives the best rate in all cases studied except
for (2, 2)-SS. However, it is interesting to note that Technique II gives a
non-zero rates for some seed codes which give zero rate with Technique I.

We have not presented any results using BCH(4). It is easy to check
that when t ≥ 5, the minimum required value of m, according to Corol-
lary 2, is the same for e = 4 and e = 5. Consequently, there is no reason
for using duals of BCH(4) when t ≥ 5; using BCH(5) instead can only im-
prove the rate. It can also be checked that BCH(4) is inferior to BCH(5)
in the other cases.

The minimum value of m is 2t+ 1 for BCH(2). It increases only by 1
to 2t + 2 for BCH(3). Moving to BCH(4), m must make a jump by 3 or
more, depending on the value of t. This is of course because the bounds
on d1 and m1 are much worse for BCH(e) when e > 3. It explains why
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the rates for the inner codes as well as for the outer codes in Tables 1
and 2 are so close together. The big increase needed in m from BCH(3) to
BCH(4) is only worthwhile when the rate of the outer code is only small
fraction of the ideal rate 1/uv. For t, u ≤ 5, BCH(3) performs very well,
and BCH(5) cannot improve the overall rate. However, for (7, 9)-SS we
would not get a positive rate using BCH(3), but BCH(5) does the trick.

6 Conclusion

We have shown that Kasami codes and BCH codes have certain separating
properties, and that they can be used to construct record breaking families
of separating codes. We only have lower bounds on the t-wise intersection
weights for t > 2. It would be interesting to find the exact intersection
weights, and if the bounds are not tight, the constructed rates may be
slightly improved.

The fingerprinting schemes of [BBK03] uses (t, t)-SS as components.
The present constructions with improved rates for (t, t)-SS, will thus make
it possible to build fingerprinting schemes with better rates as well.
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