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Abstract— This paper introduces a flexible and general con-
trol system architecture that allows for modelling, simulation
and control of different models of maritime cranes and,
more generally, robotic arms by using the same universal
input device regardless of their differences in size, kinematic
structure, degrees of freedom, body morphology, constraints
and affordances. The manipulators that are to be controlledcan
be added to the system simply by defining the corresponding
Denavit-Hartenberg table and their joint limits. The models can
be simulated in a 3D visualisation environment, which provides
the user with an intuitive visual feedback.

The presented architecture represents the base for the
research of a flexible mapping procedure between a universal
input device and the manipulators to be controlled. As a
case study, our first attempt of implementing such a mapping
algorithm is also presented. This method is bio-inspired and
it is based on the use of Genetic Algorithms (GA). Using this
approach, the system is able to automatically learn the inverse
kinematic properties of different models.

Related simulations were carried out to validate the efficiency
of proposed architecture and mapping method.

I. INTRODUCTION

In the maritime field, even though the operating environ-
ment can be very challenging, it is still quite common to
use relatively simple control interfaces to perform offshore
crane operations. In most cases, the operator has to handle an
array of levers, throttles or buttons to operate the crane joint
by joint. Moreover, each input device can normally control
only one specific crane model. When considering working ef-
ficiency and safety, this kind of control is extremely difficult
to manage and extensive experience with high control skill
levels is required of the operators. Therefore, low control
flexibility and non-standardisation are two crucial issuesof
the current maritime crane control architecture that need to
be overcome.

Robotic arms and cranes are very similar in the way they
operate and in the way they are designed. Both have a num-
ber of links serially attached to each other by means of joints
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that can be moved by some type of actuator. In both systems,
the end-effector of the manipulator can be moved in space
and be placed in any desired location within the system’s
workspace and can carry a certain amount of load. However,
traditional cranes are usually relatively big, stiff and heavy
because they normally need to move heavy loads at low
speeds, while industrial robots are ordinarily smaller, they
usually move small masses and operate at relatively higher
velocities. This is the reason why cranes are commonly
actuated by hydraulic valves, while robotic arms are driven
by servo motors, pneumatic or servo-pneumatic actuators.
Most importantly, the fundamental difference between the
two kinds of systems is that cranes are usually controlled
by a human operator, joint by joint, using simple joysticks
where each axis operates only one specific actuator, while
robotic arms are commonly controlled by a central controller
that controls and coordinates the actuators according to some
specific algorithm. In other words, the controller of a crane
is usually a human while the controller of a robotic arm is
normally a computer program that is able to determine the
joint values that provide a desired position or velocity for
the end-effector.

Maritime cranes, compared with robotic arms, rely on a
much more complex model of the environment with which
they interact. These kinds of cranes are in fact widely used
to handle and transfer objects from large container ships to
smaller lighters or to the quays of the harbours. Therefore,
their control is always a challenging task, which involves
many problems such as load sway, positioning accuracy,
wave motion compensation and collision avoidance.

In this paper, a general architecture is presented that allows
for modelling, simulation and control of different models of
maritime cranes and, more generally, robotic arms by using
the same universal input device. The main challenge of doing
this consists of finding a flexible way to map the fixed de-
grees of freedom of the universal input device to the variable
degrees of freedom of the cranes or robots to be controlled.
This process has to be realised regardless of their differences
in size, kinematic structure, body morphology, constraints,
affordances and similar. The presented architecture allows
for designing and testing different mapping procedures. As
a case study, our first attempt at implementing a mapping
method is also presented. This method is based on the use
of Genetic Algorithms (GA) [1] and using this approach, the
system is able to automatically learn the inverse kinematic
(IK) properties of different models.

Note that, since the main focus of this preliminary work
is on building the control architecture, all problems related



to rope pendulations or wave impacts on the payload are
not considered in this paper but they can be included in the
model at a later stage.

The paper is organised as follows. In Section II, a review
of the related research work is given. In Section III, we focus
on the description of the system architecture and, as a case
study, our first attempt of implementing a flexible mapping
method is also presented. In Section IV, related simulation
results are shown. In Section V, conclusions and future works
are outlined.

II. RELATED RESEARCHWORK

In existing literature, not much work has been done to
overcome the low control flexibility and non-standardisation
problems for the current maritime crane control architec-
ture. Lebans et al. [2] proposed a tele-robotic controlled
handling system operated by an intuitive controller. In [3],
Li and Wang presented a visual simulation system for a
shipborne crane. The system can realise the visual simulation
for trajectory-planning, joint control and dynamic analysis.
However, most of these previous studies only concern the
control of a specific crane/arm. Very little work has been
done regarding the possibility of controlling different arms
by using the same input device.

In [4], our research group presented a modular prototyping
system architecture that allows for modelling, simulationand
control of different robotic arms by using theBond Graph
Method. The main drawback of this approach is that the
complexity of the system tends to rise when considering a
large number of degrees of freedom.

A common assumption in all these previous works is
that the IK model of the arm to be controlled is a priori
knowledge. Classically, this assumption enables researchers
to either introduce analytical methods, which offer exact
solutions for simple kinematic chains, or propose solutions
based on numerical methods. However, when considering
arms with redundant degrees of freedom, the inverse kine-
matics can have multiple solutions, and therefore singularity
problems could arise. In addition, this method is not very
flexible, especially when planning to control different arms
using a universal input device because several IK models
are needed: one for each arm or crane to be controlled. An
alternative solution to the problem might consist of using
methods that do not assume a priori knowledge for the
IK model of the arm: a solution that derives its kinematic
properties from a machine learning procedure. In this way the
system would be able to automatically learn the kinematic
properties of different arms and new models could also be
easily added.

During the last few years, there has been increasing
interest regarding research on learning algorithms and many
efforts have been made to understand how to apply this
technology to various control problems. In particular, several
GA models have been developed by applying biologically-
inspired control mechanisms to robot control tasks. Zhang
et al. [5] proposed an approach for a robot inverse velocity
solution using GA. The authors used the principle of robot

motion propagation from link to link to find the robot’s
recursive velocity formula, which then was used to determine
the fitness function. Tabandeh et al. [6] used a GA approach
to solve for multiple solutions of inverse kinematics using
adaptive niching and clustering. The niching method was
used to modify the GA fitness value to encourage conver-
gence around multiple solutions in the search space. The
authors concluded that the proposed algorithm could be
generalised to solve the IK problem of a robot with unknown
DOF and configuration, and that the method worked with
good precision and speed.

On the other hand, most of these intelligent systems are
only able to learn the control of a specific crane/arm. At
the moment, it is not possible to use a common universal
input device to control various cranes/arms with different
kinematics. Moreover, most of these works require the same
DOF for both the input device and the model to be controlled.
In other words, the controlling device has to have the same
kinematic structure of the controlled model.

III. SYSTEM ARCHITECTURE AND CASE STUDY

A. Architecture

Since the main focus of this work is on building a universal
control architecture for different models of maritime cranes
and, more generally, robotic arms, a generalised manipulator
model is considered. The generalised model consists of a
kinematic chain that can be controlled by setting the position
or the velocity of the joints.

From a kinematic point of view, the end-effector of an
offshore crane usually consists of a wire which is used to
lift and transfer objects, while robotic arms are commonly
equipped with more complex devices like grippers or tools.
In a wider sense, in both cases, the end-effector can be seen
as the part of the manipulator that interacts with the work
environment and it may be modelled as part of the same
kinematic chain. The proposed architecture, however, also
allows the end-effector to be modelled as a distinct sub-chain
that can be controlled separately. So, in general, a mapping
control method may or may not consider the control of the
whole manipulator. Decoupling the model of the end-effector
from the model of the manipulator can, in some cases, greatly
simplify the mapping control algorithm since the complexity
of the system generally increases more than linearly with the
number of DOF.

With simplicity in mind, in this simplified model, the
nature of the crane actuators - whether they are hydraulic,
pneumatic, electric or mechanical - is not considered, but it
may be included in the model at a later stage.

The proposed control system architecture is shown in
Fig. 1. It is a client-server architecture with the input device
running as a client and communicating with a server where
the logic of the control algorithm is implemented. The con-
trolled arms are simulated in a 3D visualisation environment,
which also acts as a client and provides the user with an
intuitive visual feedback. With the information provided by
the visual feedback, the operator has a better sensing of the
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Fig. 1. The proposed control system architecture: a client-server architecture with the input device running as a client and communicating with a server
where control algorithm logic is implemented.

working area and can easily drive the end-effector of the
crane into the target position.

The control objective is that when the operator makes
a movement such as lifting, handling, transportation or
other manipulations by using the universal input device,
the controlled robot should make an analogous motion. The
proposed architecture provides the possibility of controlling
the arms in position mode or velocity mode. The user
experience is substantially different in each case. When using
the position control mode, the operator simply controls the
position of the tip of the crane with constant velocity; when
operating in velocity control mode, the operator also sets
the velocity of the end-effector by using the universal input
device. In the first case, when the operator releases the input
device, the tip of the crane moves back to its starting point,
while in the second scenario, the crane just stops moving but
it keeps the last given position.

To realise these two possible operation modes, when the
operator manoeuvres the manipulator, a vector signal with
no semantic,s, is sent from the universal input device to the
server. Here, according to the operation scenario, the vector
signal is interpreted as the desired positionxd or the desired
velocity vectorẋd.

Additionally, in order to adjust the size of the input
device’s workspace to the arm to be controlled, a scaling
factor is introduced to calculate the coordinate of the point
to be reached. In fact, the input device and the robots
to be controlled have generally very different sizes and,
consequently, very different workspaces. The proposed ar-
chitecture allows for expanding and shifting the small-scale
physical workspace of the input device to a virtual expanded
workspace allowing the robot arm for more accurate and
precise movements. In particular, referring to Fig. 2 and
denoting the reference frame of the input device’s physical
workspace withOi , the reference frame of the input device’s
virtual workspace withOv, and the reference frame of the
manipulator workspace withOw, the desired scaled position,
xds, is calculated as follows:

xds= kpxd + xw, (1)
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Fig. 2. The proposed architecture allows for expanding and shifting the
small-scale physical workspace of the input device to a virtual expanded
workspace, thus giving the robot arm the ability to make moreaccurate and
precise movements.

wherekp is the position scaling factor andxw is a shifting
vector that defines the position of the virtual reference frame
with respect to the global reference frame. Similarly, the
desired velocity vector can also be scaled to allow the
operator to execute slower or faster movements according
to the task to be accomplished. The desired scaled velocity
vector, ẋds, can be obtained as follows:

ẋds= kvẋd, (2)

where,kv is the velocity scaling factor.
Then, according to the desired mode of operation, the

mapping control algorithm parses those values to the desired
joint anglesθd or desired joint velocitieṡθd of the manipu-
lator, respectively. Essentially, for all the different models to
be controlled, the mapping methods have to implement the
classic inverse kinematic functions that can be generalised
as follows:

θd = f−1
p (xds), (3)

concerning position control, and

θ̇d = f−1
v (θa, ẋds), (4)



for velocity control, whereθa is the the actual joint angles
vector.

The calculated desired joint anglesθd or joint velocities
θ̇d are then forwarded from the server to the visualisation
environment in order to actuate the crane model. As feedback
from the visualisation environment, the actual joint angles θa

and actual joint velocitieṡθa are sent back to the server and
can be used by the control mapping algorithm.

Note that the proposed architecture allow for implement-
ing different mapping methods. Each mapping control algo-
rithm has to realise the mapping between the fixed degrees
of freedom of the universal input device and the variable
degrees of freedom of the manipulator to be controlled. It is
important that each control algorithm be implemented as an
independent and interchangeable module and that it satisfies
the interface specified by the system, (3) and (4), in order to
respect the modularity of the proposed architecture.

Another relevant feature of the proposed architecture is
that the robot model can be separated from the control
algorithm to be used. In particular, no matter which control
algorithm is used, the manipulators to be controlled can be
added to the system simply by defining their corresponding
standard Denavit-Hartenberg (D-H) tables [7] and their joint
limits. Hence, by using the D-H method, the system is able
to analytically auto-generate the forward kinematic modelof
the arms to be controlled. However, even if this approach
provides a fundamental tool to compute the position of
the end-effector from specified values for the joint values,
nevertheless, a mapping procedure to determine the joint
values that provide a desired position of the end-effector
according to the universal input has to be developed. In
particular, as a case study, our first attempt of implementing
a flexible mapping method is presented in the next section.

B. Case study: a mapping method based on GA

The proposed mapping method is based on the use of a
machine learning algorithm. In particular, a continuous GA
is employed to automatically learn the mapping functions,
(3) and (4), for the manipulators to be controlled. This
approach only requires the forward kinematic model. Note
that the same set-up of the proposed algorithm is adopted
independently of which manipulator is being controlled and
whether the selected control mode is position or velocity.
Moreover, when controlling each specific manipulator and
once selecting the particular control mode, the same instance
of GA is continuously used; what differs are the semantics
and the size of inputs and outputs.

The flowchart of the proposed algorithm is shown in
Fig. 3. It is an iterative procedure and essentially, at eachit-
eration, a population of candidate solutions or chromosomes
is evolved toward better solutions according to a particular
cost function. In the following, the key steps of the algorithm
are described.

1) Define genetic representation and cost function:ini-
tially, the genetic representation, the cost function and the
target cost are defined. In particular, each chromosome en-
codes its own properties or genes that consist of a set of joint
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Fig. 3. Flow chart of the proposed mapping method.

angles,θg, constrained within their corresponding limits. The
length of each chromosome is equal to the number of joints
to be controlled.

The fitness of every individual in the population is eval-
uated by using a cost function that assesses the Euclidean
distance between the target positionxt and the actual position
xa:

d(xt ,xa) = |xt − xa|, (5)

where, the actual position is calculated by using forward
kinematics, while the target position depends on the input
and it is given by:

xt = xds, (6)

if operating in position control mode, or by:

xt = xa+ ẋds∆t, (7)

if operating in velocity control mode, where∆t is the time
interval between two successive iterations.

2) Acquire manipulator model, control mode and target
position: the main iteration loop starts acquiring the proper
manipulator model and the control mode according to the op-
eration scenario. Moreover, the corresponding target position
is normalised according to the workspace of the manipulator
to be controlled. This will result in relating the cost function
to the corresponding workspace.

3) Generate initial population:subsequently, an initial
population of 125 individuals is randomly generated.

4) Find cost for each chromosome:the evolution process,
which is a sub-loop of the main loop iteration, starts from
the initial randomly-generated population and, at each gener-
ation, the fitness of every chromosome is evaluated according



to the previously defined cost function (5). Additionally, any
individual with genes that violate the corresponding joint
limits gets its cost increased by a considerable factor. Then
the modification process of each individual’s genome starts
in order to form a new generation.

5) Select mates:the selection of candidates that will be
used as parents in the crossover process is obtained by using
the stochastic universal sampling method[8], which is a
fitness proportionate selection method.

6) Crossover: the crossover function is defined as a
hybrid function that stochastically switches - with a 50%
crossover probability - between using a single-point and a
uniform crossover method, to create new offspring from the
selected parent chromosomes.

7) Mutation: mutation may occur in a chromosome by
stochastically adding a random value of±5% to the value
of its genes. In particular, there is a 0.5% mutation chance
for each gene. Additionally, a form of elitism is also used and
10% of the fittest chromosomes survives unaltered between
generations. Note that, using a form of elitism with 10%
of the fittest chromosomes surviving between successive
iterations and consecutive target positions makes sense be-
cause, since the operator executes continuous movements
while operating the manipulator, consecutive input vectors,
stochastically, do not differ much in terms of magnitude and
direction.

8) Convergence and time check:this evolution process
is repeated until a termination condition is reached. In
particular, the GA population stops evolving and the fittest
chromosome is returned when the cost drops below 0.01
or when the overall time spent evolving the population
exceeds 100 ms. Note that, since the target position is
normalised according to the workspace of the manipulator to
be controlled and consequently the cost function is somehow
related to the latter, there will be a correlation between the
target cost and the considered model. In this way, a value of
0.01 as cost target results in being weighed and proportionate
to each specific workspace. A time limit of 100 ms allows
the population to reach a good level of evolution in the
first few steps of iterations without effecting the operator
experience in terms of perception. Moreover, after the first
few iterations, the time limit is stochastically seldom reached
for target positions that are located inside the boundariesof
the workspace.

9) Present output:the genes of the fittest chromosome are
then presented as output. In particular, denoting these genes
as θ f and according to the operation scenario, the output is
obtained as:

θd = θ f , (8)

when operating in position control mode, or as:

θ̇d =
θ f −θa

∆t
, (9)

when operating in velocity control mode.
Note that, in this specific case study, the control of the end-

effector’s orientation is not considered as part of the mapping

algorithm but it can easily be included at a later stage without
affecting the effectiveness of the presented architecture. In
particular, three extra input signals are used to set theRoll-
Pitch-Yawof the end-effector.

IV. SIMULATIONS AND EXPERIMENTAL RESULTS

In this preliminary study, a joystick fromLogitech, the
Extreme 3d prowas used as a universal input device on
the client side. Each degree of freedom of the joystick
corresponds to a translational axis in the workspace of the
crane to be controlled. When operating in position control
mode, the joystick works as a position proportional replica
whose motion maps exactly to the motion of the crane
end-effector with constant speed, while, when operating in
velocity control mode, a movement of the joystick in a
particular direction will produce a translational motion in
the same direction at a velocity proportional to the joystick
displacement. In both cases, when the operator’s hand is
removed from the joystick, the latter returns to automatically
its starting point. Note that, thanks to the modularity of the
architecture, any other joystick or input device can be used
without affecting the effectiveness of the system.

From an implementation point of view, the logic of the
control architecture lies on the server side, which is im-
plemented by using theJava programming language. Each
manipulator to be controlled is modelled as aJava class
which embodies a D-H table, a set of joints, a workspace as
attributes and aSolver as an abstract subclass. TheSolver
abstract subclass has two methods -positionSolverand
velocitySolver- which have the prototypes that the mapping
functions have - (3) and (4) respectively. The GA mapping
method described in the previous section is a particular
implementation of thisSolver but new mapping methods
can easily be added by simply providing a corresponding
implementation of the same abstract subclass.

To speed up the developing process and to improve the
reliability of the system, several libraries were used. In
particular, theEfficient Java Matrix Library[9] was adopted
to add support for matrix manipulations, while the Ge-
netic Algorithm was implemented by using theWatchmaker
Framework for Evolutionary Computation[10]. Moreover,
the manipulators to be controlled can easily be added to the
system by simply defining their corresponding D-H tables
and their specific joint limits in aXML document.

Regarding the visualisation environment, in this prelim-
inary work, the game engineUnity3D [11] was used to
visualise the different models. However, any other visu-
alisation environment could be used without affecting the
effectiveness of the proposed architecture.

The system is based on a distributed structure and the
communication between client, server and visualisation envi-
ronment is realised by using theTCP/IPprotocol. This makes
it also possible to remotely control the different manipulators.

Related simulations were carried out in order to test the
architecture within the particular case study of the proposed
mapping method. In detail, a knuckle boom crane, which is
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Fig. 5. 3D Scatter plots showing error distribution for 512 equally-spaced target positions in the volume box that encloses the workspace of (a) the
knuckle boom crane model, (b) theSCARArobot and (c) theKUKA youBotrobot.

shown in Fig. 4-a, aSCARArobot and aKUKA youBotrobot
are modelled and simulated.

For each of these models, a trajectory tracking analysis
of the Cartesian paths for X, Y and Z coordinates was
performed and the results for the knuckle boom crane model
are shown in Fig. 4-b. Generally, the proposed system has
demonstrated a quite fast reaction to the inputs. However,
this kind of test is task-dependent.

In addition, for each of these models, an error distribution
analysis was performed considering a set of 512 equally-
spaced target positions in the volume box that encloses their
corresponding workspace. For the three models considered,
these error distributions are shown in Fig. 5 as 3D scatter
plots. It is probable that the target positions at the boundaries
of this imaginary box are less reachable by the manipulators
due to their joint constraints, which is why the corresponding
errors are stochastically greater. However, even for these
points, the GA is able to find the closest position match,
thus avoiding potential singularity problems.

V. CONCLUSION AND FUTURE WORK

Regarding the presented case study, the adopted cost
function that is currently related to the workspace of the
controlled model, could be also be related, as future work,
to the particular manipulation task to be performed. In
particular, the use of a task-oriented cost function could
considerably improve the performance of the system by
allowing for heavier weighing of selected tasks that require
higher accuracy than others.

In the future, new mapping methods which also take
heave compensation and swing related problems into account
could also be implemented and integrated allowing for better
flexibility and reliability of the proposed framework.
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