
A Lower Bound on the Weight Hierarchies of

Product Codes

Hans Georg Schaathun

Institutt for Informatikk, Universitas Bergensis, Høyteknologisenteret, N-5020
Bergen, Norway. Email: 〈georg@ii.uib.no〉.

Wolfgang Willems

Fakultät für Mathematik, Otto-von-Guericke-Universität, D 39106 Magdeburg,
Germany. Email: 〈wolfgang.willems@mathematik.uni-magdeburg.de 〉.

Abstract

The weight of a code is the number of coordinate positions where not all codewords
are zero. The rth minimum weight dr is the least weight of an r-dimensional subcode.
Wei and Yang conjectured a formula for the minimum weights of some product
codes, and this conjecture has recently been proved in two di�erent ways. In this
self-contained paper we give a further generalisation, with a new proof which also
covers the old results.
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1 Introduction

Generalised Hamming weights have received a lot of attention after Victor
Wei's paper [10] in 1991. An early project by Victor Wei and Kyeongcheol
Yang [11] started determining the weight hierarchy of product codes, given
the weight hierarchies for the component codes.

In the special case where both the component codes satisfy the chain condition
they found an upper bound on the weight hierarchy. They conjectured that
this bound is always satis�ed with equality.

Two di�erent proofs of the conjecture have appeared recently [9,7]. Each of
the proofs gives interesting generalisations of the Wei-Yang conjecture. In this
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paper we give a further generalisation of these results. In the appendix, we
suggest some open problems for future study.

1.1 Basic Notation

Let C be a linear [n, k] code over a �nite �eld Fq. If S is a subset of Fnq , let
χ(S) denote the set χ(S) =

⋃
s∈S χ(s), where χ(s) = {i | si 6= 0} for s =

(s1, s2, . . . , sn). The weight hierarchy of C is the sequence (d1(C), . . . , dk(C)),
where

dr(C) := min{#χ(D) | D 5 C, dimD = r}.
The weight hierarchy is an increasing sequence with d1(C) the minimum Ham-
ming distance. We call C a chained code if there exists a chain

{0} = D0 < D1 < . . . < Dk = C,

such that Di has dimension i and weight di(C).

We consider now the tensor product C = C1 ⊗ . . . ⊗ Ct of [ni, ki] codes Ci.
Clearly, C is an [n, k] code, where n = n1n2 . . . nt and k = k1k2 . . . kt. What
can we tell about the weight hierarchy of C from the knowledge of the weight
hierarchies of the Ci?

2 The Main Result

To state the main result, we need some de�nitions. First let

Mt := {i = (i1, i2, . . . , it−1) | 1 ≤ ij ≤ kj, 1 ≤ j < t}.

De�nition 1 Let π be a map Mt → {0, 1, . . . , kt} given by i 7→ ti. We call π
a (k1, k2, . . . , kt)-partition of r if

(1)
∑

i∈Mt
ti = r, and

(2) π is a decreasing function in each coordinate, i.e.

ti1,...,ij ,...,it−1 ≤ ti1,...,ij−1,...,it−1

for j = 1, . . . , t− 1 and 1 < ij.

Let P(k1, k2, . . . , kt; r) denote the set of all (k1, k2, . . . , kt)-partitions of r. For
π ∈ P(k1, k2, . . . , kt; r), we de�ne

∇(π) :=
∑

i∈Mt

t−1∏
j=1

(dij(Cj)− dij−1(Cj))dπ(i)(Ct). (1)

2



Note that ∇(π) depends on the weight hierarchies of all the codes Ci. Now let

d∗r(C1 ⊗ C2 ⊗ . . .⊗ Ct) := min
{
∇(π) | π ∈ P(k1, k2, . . . , kt; r)

}
,

for r = 1, 2, . . . , k. This number was �rst de�ned in [11] for t = 2. It was
generalised to arbitrary t in [7].

Theorem 2 Let C = C1 ⊗ C2 ⊗ . . . ⊗ Ct be the product of linear codes Ci.
Then dr(C) ≥ d∗r(C) for all r = 1, 2, . . . , k. Moreover, equality holds if all the
components Ci are chained.

The Wei-Yang Conjecture [11] said that d∗r(C1 ⊗C2) = dr(C1 ⊗C2) if C1 and
C2 are chained. Several researchers worked with this problem throughout the
nineties. Barbero and Tena [1] worked with r ≤ 4, and found some general
results, which also coincide with the Wei-Yang conjecture when the component
codes are chained. The number d∗r(C) was computed for certain classes of codes
in [4,8], and the results in [8] turned out to verify the Wei-Yang conjecture in
the appropriate special cases.

The case t = 2 of Theorem 2, and hence the Wei-Yang Conjecture, was proved
in [9]. The generalisation for products of chained codes was performed in [7].
Thus only the upper bound remains to be proved.

We will give a complete proof of the entire theorem, using the techniques from
[9]. This technique is very di�erent from the one applied in [7].

Some readers will miss examples of computing d∗r. None is included here, but
the interested reader may �nd some in [9]. It should also be observed that
when one of the component codes is not chained, we may have dr 6= d∗r, a fact
which is also demonstrated by example.

3 Proof of the Theorem

3.1 Projective Multisets

We shall prove the theorem in the language of projective multisets, which
naturally arise in coding theory by considering the columns of some generator
matrix as representatives of points in the projective space Pk−1. It is customary
to assume that the code has no zero-positions. We make this assumption as
well, but all the results are valid for codes with zero-positions.

For a projective multiset γ and a point x ∈ Pk−1, we let γ(x) denote the
multiplicity (or value) of x in γ. This de�nition is extended to S ⊂ Pk−1 by
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setting

γ(S) :=
∑
s∈S

γ(s).

Instead of using the weights, it is more convenient to deal with the dual weights
∆i(C) which we de�ne by

∆i(C) := n− dk−i−1(C) =
i∑

j=0

δj(C),

where

δi(C) := dk−i(C)− dk−i−1(C).

Analogously, we write

∆∗i (C) := n− d∗k−i−1(C).

Thus, in order to prove the theorem, we will prove that ∆r(C) ≤ ∆∗r(C) for
r = 0, 1, . . . , k − 1.

In [6], it was shown that there is a one-to-one correspondence between sub-
codes D 5 C and subspaces Π 5 Pk−1, such that dim Π = k − 1− dimD and
γ(Π) = n − w(D), where γ is the projective multiset obtained by taking the
columns of some generator matrix of C. In particular, ∆r(C) = n−dk−1−r(C)
is the maximum value of any r-space Π 5 P

k−1. This is the fundamental
lemma for studying higher weights in the language of projective multisets.

The following lemma should be fairly easy to verify by investigating the gen-
erator matrices, but a complete proof may be found in [9].

Lemma 3 If γ1 and γ2 are projective multisets corresponding to C1 and C2,
then the projective multiset corresponding to C1 ⊗ C2 is formed by the image
of γ1 × γ2 under the Segre embedding.

The Segre embedding of Pk1−1 × Pk2−1 in Pk1k2−1 is given by

((x1, x2, . . . , xk1), (y1, y2, . . . , yk2)) 7→ (xiyj | 1 ≤ i ≤ k1, 1 ≤ j ≤ k2).

This map is well-known in algebraic geometry [3]. It is an injective morphism,
and its image is a subvariety of Pk1k2−1, called the Segre variety.

De�nition 4 (Dual partition) For every π ∈ P(k1, k2, . . . , kt; r), the dual
partition is de�ned as

π∗(i) := kt − π((k1 + 1, k2 + 1, . . . , kt−1 + 1)− i).
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Note that π∗ ∈ P(k1, k2, . . . , kt; k − r) and (π∗)∗ = π. Furthermore, we de�ne

∆(π) := n−∇(π∗).

With this notation, we get

∆∗r(C) = n− d∗k−1−r(C)

= n−min{∇(π) | π ∈ P(k1, k2, . . . , kt; k − 1− r)}
= max{∆(π∗) | π ∈ P(k1, k2, . . . , kt; k − 1− r)}.

Hence

∆∗r(C) = max{∆(π) | π ∈ P(k1, k2, . . . , kt; r + 1)}.

The next step is to derive a more accessible expression for ∆(π).

De�nition 5 Let π ∈ P(k1, k2, . . . , kt; r), and take s ∈ {1, 2, . . . , k1}. The
s-th subpartition π|s of π is given by

π|s(i2, i3, . . . , it−1) = π(s, i2, i3, . . . , it−1).

Clearly π|s ∈ P(k2, k3, . . . , kt; rs) for some integer rs, and r1+r2+. . .+rk1 = r.
De�ne also

M1
t := {i = (i2, i3, . . . , it−1) | 1 ≤ ij ≤ kj, 1 < j < t}.

Lemma 6 The dual (π|s)∗ of π|s is the (k1 − s+ 1)-th subpartition π∗|k1−s+1

of π∗.

PROOF. We have

(π|s)∗(i) = kt − π|s(k2 + 1− i2, k3 + 1− i3, . . . , kt−1 + 1− it−1)

= kt − π(s, k2 + 1− i2, k3 + 1− i3, . . . , kt−1 + 1− it−1).

Then we have

π∗|k1−s+1(i) = π∗(k1 − s+ 1, i2, i3, . . . , it−1)

= kt − π(s, k2 + 1− i2, k3 + 1− i3, . . . , kt−1 + 1− it−1).

�

Lemma 7 We have

∆(π) =
∑

i∈Mt

∆ti−1(Ct)
t−1∏
j=1

δij−1(Cj),
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for all π ∈ P(k1, k2, . . . , kt; r) and 0 ≤ r ≤ k.

PROOF. The proof runs by induction on t. The lemma was proved for t = 2
in [9], so assume it holds for t− 1.

Observe that ∆(π) = n−∇(π∗). The de�nition of ∇(π∗) from (1) is

∇(π∗) :=
∑

i∈Mt

t−1∏
j=1

(dij(Cj)− dij−1(Cj))dπ∗(i)(Ct).

Thus we get

∇(π∗) =
k1∑
i1=1

[ ∑
i∈M1

t

dπ∗|i1 (i)(Ct)
t−1∏
j=2

δkj−ij(Cj)

]
δk1−i1(C1)

=
k1∑
i1=1

[ ∑
i∈M1

t

d(π|k1+1−i1 )∗(i)(Ct)
t−1∏
j=2

δkj−ij(Cj)

]
δk1−i1(C1)

=
k1∑
i1=1

[
n2 · n3 · . . . · nt −∆(π|k1+1−i1)

]
δk1−i1(C1)

= n−
k1∑
i1=1

∆(π|k1+1−i1)δk1−i1(C1).

Hence

∆(π) =
k1∑
i1=1

∆(π|k1+1−i1)δk1−i1(C1) =
k1∑
i1=1

∆(π|i1)δi1−1(C1). (2)

By the induction hypothesis, we get

∆(π) =
k1∑
i1=1

[ ∑
i∈M1

t

∆ti−1(Ct)
t−1∏
j=2

δij−1(Cj)

]
δi1−1(C1).

=
∑

i∈Mt

∆ti−1(Ct)
t−1∏
j=1

δij−1(Cj),

as required. �

De�ne
P̂(k1, k2, . . . , kt; r) :=

⋃
r′≤r
P(k1, k2, . . . , kt; r

′).

We have a partial ordering on P̂(k1, k2, . . . , kt; r) by setting π′ ≤ π if π′(i) ≤
π(i) for all i ∈ Mt. If π ∈ P(k1, k2, . . . , kt; r) is a partition, write Σπ = r for
the sum of its values.
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Note that if we have a sequence of (k2, k3, . . . , kt)-partitions π1 ≥ π2 ≥
. . . ≥ πk1 , then the πi de�ne the subpartitions π|i of some partition π ∈
P(k1, k2, . . . , kt; r), where r = Σπ1 + Σπ2 + . . .+ Σπk1 .

3.2 The simple case

In this section we study the product codes of two components. We will continue
by induction on t in the next section. The proof here is slightly di�erent from
the proof given for t = 2 in [9].

Let C = C1⊗C2, where dimC = k. Let γ1, γ2, and γ be the projective multiset
corresponding to C1, C2, and C respectively.

Let Π 5 P
k−1. We will de�ne the associated partition π(Π) of Π. For 0 ≤

i ≤ k1 − 1, let Θi be the set of points b ∈ Pk2−1 such that there is an i-space
Φi 5 Pk1−1 with Φi ⊗ b ⊆ Π. Let π(Π)(i) = dim〈Θi−1〉+ 1 for i = 1, 2, . . . , k1.
Obviously Θi ⊆ Θi−1. Hence π(Π) is indeed a partition. Finally put ti :=
dim〈Θi〉.

For x ∈ Pk2−1 de�ne

R(x) := {p⊗ x ∈ Π | p ∈ Pk1−1}.

By the bilinearity of the Segre embedding we have R(x) 5 Pk−1.

Lemma 8 If Π 5 Pk−1 is an r-space, then π(Π) ∈ P̂(k1, k2; r + 1).

PROOF. Let b0, b1, . . . , bk2−1 be a basis for P
k2−1 such that b0, b1, . . . , bti ∈ Θi.

For each i where 0 ≤ i < k2, let b
0
i , b

1
i , . . . , b

ri
i be a basis for R(bi) where

ri = max{j | i ≤ tj}. Clearly bji = aji ⊗ bi for some aji ∈ Pk1−1.

Consider the set

B := {bji | 0 ≤ j ≤ k1 − 1, 0 ≤ i ≤ tj}.

Clearly

#B =
k1−1∑
i=0

(ti + 1).

The set B is a set of projectively independent points, and B ⊆ Π. Since
dim Π = r, we get

Σπ(Π) =
k1−1∑
i=0

(ti + 1) = #B ≤ r + 1,
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proving the lemma. �

Lemma 9 If Π 5 Pk−1, then γ(Π) ≤ ∆(π(Π)).

PROOF. For convenience, we write Θk1 := ∅. If b ∈ Θi\Θi+1, then R(b) =
Φi(b)⊗ b, where Φi(b) is an i-space in P

k1−1.

By Lemma 3, we have

Π = R(Θ0) =
⋃
b∈Θ0

R(b) =
k1−1⋃
i=0

⋃
b∈Θi\Θi+1

(Φi(b)⊗ b).

Note that the union is disjoint. Hence

γ(Π) = γ

( ⋃
b∈Θ0

R(b)

)
=

k1−1∑
i=0

∑
b∈Θi\Θi+1

γ1(Φi(b)) · γ2(b)

≤
k1−1∑
i=0

∑
b∈Θi\Θi+1

∆i(C1) · γ2(b) =
k1−1∑
i=0

δi(C1)
∑
b∈Θi

γ2(b)

≤
k1−1∑
i=0

δi(C1)∆ti(C2) =
k1−1∑
i=0

δi(C1)∆π(i+1)−1(C2)

=
k1∑
i=1

δi−1(C1)∆π(i)−1(C2) = ∆(π(Π)).

(3)

Thus the lemma is proved. �

We observe that this lemma implies ∆r(C1 ⊗ C2) ≤ ∆∗r(C1 ⊗ C2) and thus
proves the bound from Theorem 2 for t = 2.

Lemma 10 If Π′ 5 Π 5 Pk−1, then π(Π′) ≤ π(Π).

PROOF. Let Θi and ti be as in the de�nition of π(Π), and let Θ′i and t
′
i be

the corresponding objects for Π′. We only have to prove that t′i ≤ ti for all i.
We obtain Π′ from Π by removing points. Hence Θ′i ⊆ Θi for all i, and t

′
i ≤ ti

as required. �

3.3 The general case

The t component codes Ci correspond to t projective multisets γi on P
ki−1 for

i = 1, 2, . . . , t. Let γ be the multiset corresponding to C = C1⊗C2⊗ . . .⊗Ct,
and let k := dimC.
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Lemma 11 For every subspace Π 5 P
k−1 of dimension r there is a well-

de�ned associated partition π(Π) ∈ P̂(k1, k2, . . . , kt; r + 1) such that

(a) γ(Π) ≤ ∆(π(Π)); and
(b) if Π′ 5 Π 5 Pk−1, then π(Π′) ≤ π(Π).

PROOF. We argue by induction on t. The base case, t = 2, is proved in
Lemmata 8, 9, and 10. Write k′ := k2 · k3 · . . . · kt. Let γ′ be the projective
multiset corresponding to C2 ⊗ C3 ⊗ . . .⊗ Ct.

Let Θi ⊆ Pk
′−1 be the set of points p such that there exists an i-space Φi 5

P
k1−1 where Φi ⊗ p ⊆ Π. Obviously Θi ⊆ Θi−1. Let ti := dim〈Θi〉.

By the inductive hypothesis (b) there is an (unique) associated partition πi ∈
P̂(k2, k3, . . . , kt; ti + 1) to 〈Θi〉 such that

γ′(Θi) ≤ γ′(〈Θi〉) ≤ ∆(πi) (4)

for each i. Furthermore πi ≤ πi−1 by the inductive hypothesis (2) since Θi ⊆
Θi−1. Hence the πi can be viewed as the k1 subpartitions of some partition
π ∈ P̂(k1, k2, . . . , kt; r

′ + 1) where

r′ :=
k1−1∑
i=0

(ti + 1)− 1.

More precisely, π(i1, i2, . . . , it−1) = πi1−1(i2, i3, . . . , it−1). By an argument sim-
ilar to that in the proof of Lemma 8, we get that r′ ≤ r. Hence

π ∈ P̂(k1, k2, . . . , kt; r + 1).

For x ∈ Pk′−1 de�ne

R(x) := {p⊗ x ∈ Π | p ∈ Pk1−1}.

By the bilinearity of the Segre embedding, R(x) 5 Pk−1. If b ∈ Θi\Θi+1, then
R(b) = Φi(b)⊗ b for some i-space Φi(b) ∈ Pk1−1.

Now we can write (as in the proof of Lemma 9),

Π = R(Θ0) =
k1−1⋃
i=0

⋃
b∈Θi\Θi+1

R(b).
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Hence we get

γ(Π) =
k1−1∑
i=0

∑
b∈Θi\Θi+1

γ1(Φi(b))γ
′(b)

≤
k1−1∑
i=0

∆i(C1)
∑

b∈Θi\Θi+1

γ′(b) =
k1−1∑
i=0

δi(C1)
∑
b∈Θi

γ′(b)

=
k1−1∑
i=0

δi(C1)γ′(Θi) ≤
k1−1∑
i=0

δi(C1)∆(πi) = ∆(π).

(5)

The bound in the last line follows from (4), and the very last equality follows
from (2). This proves (a) assuming that (a) and (b) holds for t− 1. It remains
to prove that (b) holds.

Let π′ be the partition associated with Π′, and let π′i := π′|i be the associated
subpartitions. To prove the second statement of the lemma, it is su�cient to
show that π′i ≤ πi for all i.

Let Θ′i be the Θi related to Π′. Recall that π′i is the partition associated with
〈Θ′i〉. We obtain Π′ by removing points from Π. Hence 〈Θ′i〉 5 〈Θi〉, and by
the inductive hypothesis π′i ≤ πi as required. �

3.4 When the Chain Condition holds

Lemma 12 If C1, C2, . . . , Ct satisfy the chain condition, then for every

π ∈ P(k1, k2, . . . , kt; r + 1)

there is an r-space Π 5 Pk−1 such that π(Π) = π and ∆(π) = γ(Π).

Moreover, if π′ ∈ P(k1, k2, . . . , kt; r
′ + 1) and π′ ≤ π, then there is an r′-space

Π′ 5 Π such that π(Π′) = π′ and ∆(π′) = γ(Π′).

PROOF. First consider the case where t = 2. Let p0, p1, . . . , pk1−1 be a basis
for Pk1−1 such that 〈p0, p1, . . . , pi〉 is an i-space of maximum value for C1. Let

∅ = Φ−1 ⊂ Φ0 ⊂ . . . ⊂ Φk2−1 = Pk2−1

be a chain of subspaces of maximum value for C2. Write ti = π(i + 1) − 1
for i = 0, 1, . . . , k1 − 1, and let Π = 〈pi ⊗ Φti | i = 0, 1, . . . , k1 − 1〉. Clearly
dim Π = r and π(Π) = π. As for the value, it is not hard to verify equality in
(3). This proves the �rst statement of the lemma for t = 2.
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Let t′i = π′(i + 1) − 1 for i = 0, 1, . . . , k1 − 1, and let Π′ = 〈pi ⊗ Φt′i
| i =

0, 1, . . . , k1 − 1〉. Clearly Π′ ⊆ Π, and the remaining properties of Π′ follows
by the argument above. Hence the lemma is proved for t = 2.

Assuming that the lemma holds for t−1, the inductive step is similar. Let k′ =
k2k3 . . . kt, and γ

′ the projective multiset corresponding to C ′ = C2⊗ . . .⊗Ct.
Let p0, p1, . . . , pk1−1 be a basis for P

k1−1 such that 〈p0, p1, . . . , pi〉 is an i-space
of maximum value for C1. Let πi = π|i+1 be the subpartitions of π. By the
inductive hypothesis, there is a chain

Φ(πk1) ⊆ Φ(πk1−1) ⊆ . . . ⊆ Φ(π1) ⊆ Pk1−1,

of subspaces of value γ′(Φ(πi)) = ∆′(πi), where ∆′(π) is computed with the
weight hierarchy of C ′. We de�ne

Π = 〈pi ⊗ Φ(πi) | i = 0, 1, . . . , k1 − 1〉.

Clearly dim Π =
∑k1
i=1 Σπi − 1 = r. The value is given by (5), and it may be

veri�ed that equality holds.

Consider at last a partition π′ ≤ π. We construct as above a chain of subspaces

Φ(π′k1
) ⊆ Φ(π′k1−1) ⊆ . . . ⊆ Φ(π′1) ⊆ Pk1−1.

This can, by the induction hypothesis, be done such that Φ(π′i) ⊆ Φ(πi). We
de�ne

Π′ = 〈pi ⊗ Φ(π′i) | i = 0, 1, . . . , k1 − 1〉.
Clearly Π′ ⊆ Π, and the remaining properties are proved as in the previous
paragraph. �

A Some Future Work

The support weight distribution was introduced in [5]. It was proved that if
the support weight distribution for C is known, then one can also �nd the
weight distribution of C ⊗ S, where S is a simplex code. The support weight
distribution is only known for a very few classes of codes. Is it possible to �nd
the support weight distribution of some classes of product codes, such as the
product of two simplex codes?

David Forney [2] proved that the generalised Hamming weights give a lower
bound on the state complexity of a minimal trellis. It was proved that this
bound is met with equality with some optimal bit ordering if and only if the
code meets the so-called two-way chain condition. Is it possible to determine
completely the state complexity of a product code, given the state complexities
of the component codes?
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