Duality and support weight distributions number of occurrences &fin the collectiony. The mapy is
always extended to the power set.®f

AS) =D As), VS CS.
ses’
disﬁ?;&;%Crﬂefoih°W>h£W o iogqpvlfltheeréhg , Support S"e"ce(i)%t The number(s) or 4(S") is called the value ofs or S'.

. r — . : . .
minimum supp;ort weight of the2dual ’code, proflided the weight The Size ofy is the valuefy(S). we will be Congerned Wlt_h
enumerator of the dual code is known. multisets of vectors. We will always keep the informal view
of ~ as a collection in mind.

We consider a fixed finite field, with ¢ elements. A
message word is &-tuple overF,, while a codeword is an
n-tuple overF,. Let M be a vector space of dimensidn
(the message space), ad a vector space of dimensiomn

We have observed some recent interest in the support weighe ambient space). The generator matfixgives a linear,
distributions, particularly those of self-dual codes [2], [7]injective transformationd : M — V, and the code is
Possibly, these parameters may lead to non-existence progfgply the image undef.
finally determining the highest minimum distance of self- The columns of7 form a multisetyc on M. Two codes are
dual codes with certain lengths. The original motivation fogaid to be permutation equivalent if one is obtained from the
introducing the support weight distribution was to compute thgher by reordering the columns of the generator matrix, and
weight enumerator for certain infinite classes of cyclic codesus . definesC' up to permutation equivalence. Two codes
[3]. The weight enumerator in turn is used for the computatiaire also equivalent if one can be obtained from the other by
of error probabilities in error-control systems. replacing a columig of G by ag for some non-zero scalar.

Klgve has previously shown how to compute the suppadence the cod€’ can alternatively be defined by the projective
weight distribution A}, provided that we knowA}" for " < multiset~/, obtained by mapping into PG(k — 1,¢), the
r of the dual code. This result appears first in [5] and wasrojective geometry of dimensioh— 1 over F .
formulated as a generalised MacWilliams identity in [6]. A We say that two multisets, and~; on M are equivalent
different proof of this result appeared in [9]. if v4 = 70 o ¢ for some automorphisng on M. Such an

In [8], we explored a relation between a code and theutomorphism is given by : g +— gA where A is a square
projective multiset corresponding to the dual code. In theatrix of full rank. Replacing eacf; by g; A in the encoding
sequel, we will use this relation to determine support weighinction is equivalent to replacing the messageby Am.
distributions of high orders. Whereas previous results rel other words, equivalent multisets give different encoding,
on solving a large set of equations, the MacWilliams typeut they give the same code. This is an important observation,
identities, we find formulaic expressions which are faster tsecause it implies that the coordinate systemhbnis not
compute. essential.

We hope that this will take us one step towards the completeLet B := {ej,es,...,e,} be the coordinate basis &f.
determination of support weight distributions of some selffhe vectors may be considered as linear form&/ohere is
dual codes, for instance tl&2, 36, 16] Type Il code. It is not a natural endomorphism : V — V /C*, where u(v) =
known whether this code exists or not. v + C*. The elements oV /C* are linear forms onC,
and u(e;)(c) = g;m wheneverc = mG. So whenC is
identified with M, g; will correspond tou(e;), establishing
an isomorphism betweelW /C+ and M and proving the
There is a well-studied correspondence between projectisfiowing lemma.

multisets and linear codes. In its easiest description, theLemma 1:A codeC C V is given by the vector multiset
projective multiset is obtained by taking the columns of some. .— /,(B) onV /CL =~ M.

Hans Georg SchaathuWember, IEEE
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I. INTRODUCTION

Il. PROJECTIVE MULTISETS AND DUALITY

generator matrix of the code, counting multiplicities [4]. We Given a collection{sy, so, ..., s, } Of vectors and/or sub-
will keep this description in mind, but still develop a moresets of a vector space, we write (s1,ss,...,5m,) for its
mathematically rigorous description, which will aid us in th@pan. In other wordss;, s,, .. ., s,,) is the intersection of all
study of duality. This description follows the one presented Kubspaces containing, s, . . ., .
[8].
B. Weights

A. Vectors, Codes, and Multisets We define the suppork(c) of ¢ € C to be the set of

A multiset is a collection of elements which are not neccoordinate positions not equal to zero, that is
essarily distinct. More formally, we define a multiseton a x(e):={i|e; #0}, wherec = (ci,ca,...,cn).

setS asamapy: S — {0,1,2,...}. The numbery(s) is the
The support of a subsét C C is
The author is with Dept. Informatics, University of Bergen, Norway. Email:
(georg@ii.uib.nd. The work has been partially supported by the Research x(S) = U x(c).
Council of Norway. ces



The weight (or support size)(.S) is the cardinality ofy(S). D. Duality

Theith minimum support weight; (C) is the smallest weight Write (d

of an i-dimensional subcod®; C C. The subcodeD; will (di b
1>

_be called a minimum-subcode. The weight hierarchy of Then u(B) is a submultiset ofyc. Every submultiset of

is (d1(C),d2(C), ..., di(C)). _ vc is obtained this way. Obviouslflim(B) = #B. Let
The support weight distribution @ is the set of parameters , ._ (B) N C** be the largest subcode 6 contained in

{A7(C) i =1,...,nr = 0,.... k}, where A7(C) is the gy Then D is the kernel ofy|(py, the restriction ofu to

number ofr-dimensional subcodes of weight (B). Hence
The following lemma was proved in [4], and the remark is

a simple consequence of the proof. dim{u(B)) = dim(B) — dim D. @)
Lemma 2:There is a one-to-one correspondence between

subcodesD C C of dimensionr and subspace§ C M of Clearly#B > w(D). _

codimensionr, such thatyc(U) = n — w(D). _ We are partlt_:ularly mteres_ted_ in the case when wp(?B)
Remark 1:Consider two subcode®; and D, and the 'S @ cross-section ofi(B). This is of course the case if and

corresponding subspacés andU,. We have thatD, c D, MY if 1(B) equialls the cross-sectin(B)|,,(s))-

is equivalent tol/,  U;. Let U C V/C+ be a subspace. We hay€B)|; = u(B),
We defined,_,.(v¢) such thatn — dj,_,(vo) is the largest Where B = {e € B | u(e) € U}. Hence we have(B) =

value of anr-spaceV, C M. From Lemma 2 we get this #(5)l(u(m)) if and only if there exists no point € B\ 5 such

corollary. thatu(e) € (u(B)).

It follows from (1) that a large cross-sectipiB) of a given

dimension, must be such th@B) contains a large subcode of
C* of sufficiently small weight.
Define for any subcod® C C*,

: : . . B(D) = {es |z € x(D)} C B.

A submultisety’ C ~ is a multiset with the property that _ _ _
~v'(z) < ~(x) for all z. If v is a multiset on some vector spacédbviously 3(D) is the smallest subset @& such thatD is
V, we define a cross-section ¢fto be the restrictiony|;; to ~ contained in its span. It follows from the above argument that
some subspack C V. Cross-sections of projective multisetdf D is a minimum subcode and(3(D)) is a cross-section,
are defined in the same way. thenp(68(D)) is a maximum cross-section féf. Thus we are

In some cases it is easier to deal with cross-sections df@d to the following two lemmata.
their sizes, than with subspaces and their values. In particularkemma 3:1f n —d, = d;-, B C B, and#B = n—d,, then
we have thatn — dy_,.(y¢) is the size of the largest- u(B) is a cross-section of maximum size and codimensidn

...,dg) for the weight hierarchy ofC, and
.., d:_,) for the weight hierarchy of*. Let B C B.

Corrollary 1: If C is a linear code and is the corre-
sponding multiset, thed,(v¢) = d;(C).

C. Projective spaces and multisets

dimensional cross-section ot. and onlyB = ﬂ(Dz) for some minimum-subcodeD; C ct.
Let Lemma 4:Let r be an arbitrary numbef) < r < n — k.
Leti be such thatl: <n—d, < df,, and letD; C C* be a
r—1 k—i .. . v v .
k] H g- =1 minimum é-subcode. Them({B)) is a maximumr-subspace
r| - gr—i—1 for any B C B such thatD; C (B) and#B =n — d,.

denote the number of distinct linearspaces containing the
origin. The number of--spaces containing a given-space is

given by {’::ZZ . Let U7 (C) be the set of ali--spaces of valug, i.e.
The r-th generalised Singleton bound states thak dy — r Lo
k+r. The code is-MDS if it meets this bound with equality. T; (€)= C PG(k —1,9) | 1o(ID) = &, dim T = r}

Consider ann-spacell,,, € PG(k —1,q). Let We define thevalue distributionof v to be

E. Support weight distributions

i, : PG(k =1, g\l — PG(k =2 —m, q) Vi'(ve) = Vi (C) == #2T; (C). )

be the projection map throughl,,. Let C’ be the code By Lemma 2, each element @7 (C) corresponds to & —
corresponding tac: := ycon~!. Note thatC’ has parameters 1 — r-dimensional subcode of weight— i. HenceV; (C) =
[n —~¢ (), k — 1 —m]. Everyr-space inlPG(k —2—m,q) A*"177(0).

is the image of an(r + m + 1)-space containingl,, in We will mostly abbreviate and writ¢;” = V;"(C), A] =

PG(k —1,q). Hence A7(0), AT = A7(CY), and V) = Vi (CL). Define
ANC) < Arymss (C) = 7o (TTn). mi = my(C) = dy(CH) —i— 1.
Hence, ifIl,, has maximum value, thefi’ is (k —1 —m, + Obviouslymo = —1 andm,,_, = k — 1. We will determine

m — 2)-MDS. Note thatC’ can be viewed as a subcode@f Vi for m; <r <mj;, for j =0andj = 1. We start with a
[1]. relatively simple result.



Lemma 5:1f m;41 > my, then The lemma follows by contradiction. |
v _ i There is only onén, n—1] code of Types up to equivalence.
mi+j+1 T my+i+D The corresponding projective multiset is obtained by taking a
V;mj =0, i>m;+j+1L frame for a projectives-space and then adding projectively
Proof: Consider anmj -spacell for some j where independent points to obtain dn — 2)-space.
mjy1 > m;. From Lemma 3 we know thall has value Lemma 7:For any codeC, if m; < s < r < msg, We have
dj =m; +j+1 if and only if it containsx; for all ¢ € x(D)

where D C C* is a j-dimensional subcode of weight!. #6(r,s) = ALis " ., j 5 ?
This gives the first equation. The second equation is obvious. Pproof: The number of maximum-spaces of Type = s
B s
The difference sequenc@y,d,...,0k—1) is defined by -
8; = dp_; — di_1_;, and is occasionally more convenient #6(s,8) = Ag o, @)
than the weight hierarchy. The maximum value of &n py Lemma 5.
dimensional, projective subspaceds. = 6y + ...+, =  An r-spacell, of Type s contains a uniques-spacell,
n—dg_1-r. of value s + 2 by Lemma 6. Hence there is a one-to-one
correspondence betweerspaces of Type and pairs(Il,, .S)
[1l. THE NEW RESULTS wherell, € (s, s) and .S C y¢\I; is a set ofr — s points.
The following theorem was proved in [5]. There ared}, , ways to choosél, by (3) and(",*7?) ways
Theorem 1:For —1 < r < m;, and any code”, we have !0 chooseS. Hence we get the result. u
that V" (C) = V¥ (n, k) where Lemma 8:1f m; < r < my, then
r n\ R i k—J—i n—j 2 = 121;-2(”82)7
Vj(”’“(j) 2 (Y L—j+1—i]( i ) 2 e
= Vi=0, i>r+2.
for any codeC. 4 Proof: An r-space of value + 2 has Types for somes
Our result is the determination &f'(C’) whenm; <r < wherem,; < s < r. Thus we can take the sum of the equation
ma. We know thatV;" = 0 for all i > 7 + 2. in Lemma 7. Hence the result. n

Consider anr-spacell of value r + 2. The cross-section
yo|n defines an[r 4+ 2,r 4+ 1] code C’. Let s := m1(C’). B. Whenn =k + 1
We say thafll has Types. Clearly m; < s < r. The set of
r-spaces of Type is denoted byS(r, s).

Given anr-spacell’ of valuei < r + 1, we say thatll’
is Type | if it contains a(i — 2)-spacell” of value . This We obviously have thaF(j, n, s) = 0 if j > n — 1. When
(i — 2)-space is unique when it exists. Cleafly has Types n—s+2 Cis MDS. S0 B - '
for somes, and then we say thal’ is Type [s). ' '

If II' is not Type |, we say that it is Type II, and then it F(jos+2,8) =V (s +2,s+1). (4)
contains a uniquéi — 1)-space of value. Let 47 (X) be the Lemma 9:For any[n,n — 1] code of Types, if j <n —2,
set of r-spaces of valué and TypeX, where X is I, Il, or thenU™~3(I1) is given by -

I(s) for somes. Write U/ (X) := #7 (X). J

In this section we study afn,n — 1] code C' of Type s.
We will need the numbeF (j, n, s) := U (1) for C' in the
later sections.

Fins) = Yy 2+ 0" Y-,

§=0
wherem =n — s — 2.

A. Subspaces of Maximum Value
If C is an[n,n — 1] code, there is a unique such that

05(C) = 2, and;(C) = 1 for i # s. Clearlym,(C) = s. In Proof: Note that ifn = s+ 2, the lemma reduces to (4).
this case, we call’ an[n,n — 1] code of Types. We consider the projective spaB&(n — 2, q). We want to
Lemma 6:Let yc be a projective multiset defining angng the numberr (i, 7, s) of hyperplanes of valugand Type
[n,n — 1] codeC of Type s. Then there is a unique-space || consider an arbitrary such hyperplabe There is a unique
I, of values + 2. s-space©® C PG(n — 2,q) of value s + 2. Every hyperplane

Proof: There exists at least one susfspace since = 1,5t mee in a subspace of dimension- 1 or more. Since
my = A4(C) — 2. Suppose there are two distinespace, 11 has Type 11,0’ := © NI is exactly an(s — 1)-space. Let
and©, of values+2. Leti be the dimension dd := ©,N0Os. j=70(0).

Clearlyi < s and thusyc(©) < i+ 1. We get Givenj (0 < j < s), there areF(j,s + 2,s) ways to

v((01,02)) > 2(s+2) — (i +1) =25 —i + 3, choosed’. LetII’ C II be the smallest subspace of vaiiend
containing®’. Given®’, we findII' by choosingi — j points
but among then — s — 2 points of positive value not contained in
dim(©y, 02) =25 —i = 25 — 4, 0. Given j, there are thus

) s

. n 2\ s n—s—2
Y((©1,02)) < Aoy i(C) =25 — i +2. FQH&$(i—j>W'@+ZHﬂ<i—j)



ways to choosél’. difficult, becauses does not contain all points of positive value
Consider now the projectionr,. The multisety” := vz o in (S). Suppose(S) has Types. Then (S) can be chosen
7t defines ann —i,n — 1 — s — i + j] code. There is but in Uj;ll(I(s)) different ways. There is one point ¢ S of
one pointz of value~”(x) = s+ 2 — j, namelyx = 711 (©).  positive value in{S), andz must be contained in the unique
The remaining points have value 0 or 1. We define a newspacell; C (S) of values+2. Moreoverz can be any point
projective multisety’ by +'(z) = 1 and+/(y) = ~v”(y) for of positive value inll,, hence there are+ 2 different choices
y # x. The corresponding code is a projectiv€,n’] code for S giving the same(S) of the third case. This gives the

wheren’ =n —i—s—1+3j. lemma. [ |
Finding IT = TII’ of value i is the same as finding a Let
hyperplane of zero value for, which is the same as counting U(ry,v1, X1;72, 02, X2)

one-dimensional subcodes of weigtit for the [n’, n’] code.

This number is(g — 1)* ~1. The lemma follows by summing ={(I1, Iz) | I € I, I € 407 (X;), j = 1,2}

over all 5. m We will write v; = x resp.X; = %, when we allow any value
of v; resp.X;.
C. Other subspaces Lemma 10:If m; <r <my and0 < j < r, then
Now we return to the generah, k] code C, in order to U (IT) = qg—1 U1 g —1
determineV; for j < + 1. A q—1
Proposition 1: Form; <r < msy andr > i — 2, we have r42
. ~ —s—2 - #ﬂ(r—l,j,ll;r,v,*)).
UT(I(s)) = Vo i (n — i k+ 1 — i) AL, (7 ° ) v;H
‘ . i—s—2 Proof: We will count the number of elements &fr —
U@ =Vy—n—ik+1—q)Vi 2 1,4,1L; 7, 4,1I) in two different ways. Consider a pair
Forr <i—2, we haveU! (I) = U (I(s)) = 0. (IU',10) € U(r — 1, 4,1L;7, 4, 11).

Proof: We have from Lemma 7, that
There areU7 (IT) ways to choosdl. For I, we can choose

U=2(I(s)) = 1‘1§+2 <” —Ss— 2>. any (r —1)-space containing the uniqyg¢— 1)-space of value
i—2—s 4 in II. Hence

An r-space of valueg and Types contains a uniquéi — 2)- ‘ ‘ . r+1—j

spacell’ of valuei and Types. There arelU; %(I(s)) ways #U(r =1, 5,1, j, 11) = U7 (IT) { r—j ]

to choosell’. 1 )
Consider then the multiset := ¢ o7 obtained by pro- = U}”(Il)q

jection throughlI’. We know thaty’ defines arin—i, k+1—1] ¢-1

code C’. Finding anr-spacell > IT' of valuei corresponds This gives the first of the two expressions we seek.
to finding an(r 4 1 — 4)-space of value 0 for’. Furthermore ~ Now we observe that
~" defines a code with r+2

U(r —1,4,11; = U(r—1, 4,11, .
Ay —i(C') < Dy -1 (C) =i = my + 1 —i. AU =15 Thm %, %) ;# (r=Lj1r,v,%). (6)

HenceC' is (k—1—m3y+i)-MDS, and since+1—i < m2—i, This number can equivalently be obtained by counting the
there afeVSHﬂ(?'l — i,k +1—1i) ways to choosdl = II".  number of (r — 1)-spaces of valug and Type Il, and the
This proves the first equation, and the second one follows hMmber ofr-spaces containing each such space. This gives

summing over alls. ]

Proposition 2: If m; < j < ma, we have BS(r — 1,5, TL 7, %, %) = U;"l(H) [k’ I 7’]
- n -, izt - -1 (7)
vy = <j> —UTm = Y (s + 20T (1)), =0
S=ma

Fori> j, we haveUf‘l(H) —o. Clearly we have that

Proof: We consider all the{?) possible ways to chose a #U(r —1,4,1L 7, j,1) = 0,
setS of j points of positive value. To find’? ' (II), we must

if ine this with with 7
subtract the number of cases where thg¢gmints generate a and if we combine this with with (6) and (7), we get

subspace of Type |. ity et 41
Sincej — 1 < my, we have three cases: #U(r = L,J i, 3,10 = U7 (1D q—1
1) dim(S) =j — 1 andvc({S)) = j. (Type Il r+2 ‘
2) dim(S) = j — 2 and~c((S)) = 5. (Type 1) - Z #U(r — 1, 5,15 7,0, %),
3) dim(S) =j — 1 andyc((S)) =5 + 1. (Type I) v=j+1

The number of set§ giving the first case ié]jf’l(II), while which is our second expression fgkil(r — 1,5, II; r, 5, II).
for the second case, it i&7*(I). The third case is more Combining this with (5), we get the lemma. u



Lemma 11:If j < v — 1, then enumerator ofC+. We have fork +1 — d,(C*) < r < k,

that
#U(r — 1,5, 1,0, 1(s)) = U (I(s))F (5,0, 8)¢" 77" ?

Proof: Consider a pair AT(C)—< n )k-&-ii?:“—n(_l)j{ k—nti—j }<Z>
(I, 10) € U(r — 1,4, 1T;7,v,1(s)). S \n—i = k—r—n+i—j]|\j/)

There areJ! (I(s)) ways to choosél. There is a uniquév —
2)-space® C II of value v and Types. The intersection and fork +2 —dy(C*) <r < k+1—di(C*), that
© :=1I'NO is a(v—3)-space of valug. There aref(j, v, s)
ways to choos®'. AF(C) = UEZI (1) + URZ ()
Consider the projectionre:. Finding IT' is the same as
finding a hyperplane ifnm e, not meetingme: (©), which  wheret*~1="(11) andU*~1~"(I) are given by Propositions 1,
is a point. There ardq" ™3~V — 1)/(¢ — 1) hyperplanes in 2 and 4.
im 7, of which (¢"+2=v — 1)/(q¢ — 1) meetre, (©). Hence

there areg” 2~ hyperplanes not meetinge: (0). [ ]
Lemma 12:If j < v, then IV. DISCUSSION OF FUTURE WORKS
. . _ r v—2 r+l—v
#u(r_* L5, 17,0, 1I) =0, (IHV; (v, v)q : We have found formulze for computing some high order sup-
Proof: Consider a pair port weight distributions. The formulee are good for electronic
(I, II) € $(r — 1, 4, 1T; , v, II). computation of the parameters, and for instance computing

. . . the third through the 24th support weight distribution of the
There arel/; (IT) ways to choosel. There is a uniquév—1)- |24, 12] Golay code is a matter of seconds. On the other hand,
space® C II of valuev, andvc|e defines v, v] code. The simplified formulze more comprehensible to human readers
intersection®’ := II' N © is a (v — 2)-space of valug. There \yould definitely be an improvement.
v—2
areV;”"(v,v) ways to choos®’. _ It will not be too difficult to continue and computé? (C)
Consider the projectionre,. Finding II" is the same as fop

finding a hyperplane irim rg, not meetingre/ (©), which n el ol
is a point. There arg"+!~? such hyperplanes. [ k—dy +22>7>k+3—min{dy,2d; },

We define for brevity:
y provided the second support weight distribution @f- is

) 2 ) known. We have omitted these results, because they would be
§(r.d) = D #U(r— 14170, %). too tedious, without adding significantly to the understanding
v=gtl of the subject.
Proposition 3: We have To go belowk + 3 — 2di- is more difficult, because if >
r42 2d{, we may have a codeword € C+ and a subcod® C
3(r,j) = Z gty { s IV o — 10— 1) C* of dimension more than one, such thdt) = x(D). This
codeworde will be counted inA}, but for computingA?, only

v=342

r D should be counted. It is a long way to making a general
+ > UL(I(s)F (v, 9)|. statement for < k4 r — 2d;-, but in special cases there may
Proof: First note that s=my be possibilities.
foot: TSt hote tha We have tried to compute support weight distributions of
#U(r — 1,5, 1, r+2,11) = 0, the tentative[72,36] Type Il self-dual code. By combining

Theorems 1 and 2 with the MacWilliams-Klgve identities, we
becausel;"; ,(II) = 0, and that are left with about 100 unknowns. There is a chance that this
#4(r — 1,517, +1,1) =0, system may be solved completely by extending the techniques
presented here, and combining it with all the techniques found

because there is no subspace of value a subspace of value j the literature. That will be extensive labour in itself, so we
j+ 1 and Type I. Now the result follows from Lemmata 1legve it to future works.

and 12. [ |
Proposition 4: If m; <r <mg and0 < j <r, then
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