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Abstract

LetI" be a code of length, and (', U) a pair of disjoint subsets of
I'. We say thatT,U) is separated if there exists a coordinatsuch
that for any codewordc, . . ., cp) € T and any codewordf, . .., c,) €
U, c¢; # ;.. The codel is (r,u)-separating if all pairsT,U) with
#T =t and #J = u are separated.

Separating codes (or systems) are known from combinatorics, and
they have also been applied, under various terminology, for water-
marking.

We present some new bounds, generalisations, and constructions
for separating codes.
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Codes séparants

Résumeé

SoitI" un code de longeut, et (T, U) un couple de sous-ensembles
disjoints del". On dit que {",U) est séparé s'il existe une position
telle que pour tout motc, .. ., cy,) €T et tout mot ¢,..., c,) €U,
ci # ¢;. Le codel” est dit ¢, u)-séparant si tout tel couple ol'#= ¢ et
#U = u est séparé.

Les codes, ou systemes, séparants sont connus en Combinatoire ;
ils ont été utilisés, sous des vocables divers, dans des problémes de
marquage numerique.

Nous présentons de nouvelles bornes, des généralisations et des
constructions de codes séparants.
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systeéme séparant, code intersectant
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Skiljande kodar

Samandrag

LatI" vera ein kode med leng, og lat (', U) vera eit par av dis-
junkte delmengder al. Me seier at T, U) er skilt om det er ein plass
i slik at for alle ord ¢4, . . ., cp)eTogalleord ¢y, ..., c,) €U, harme
¢ # c.. KodenI er skiljande om alle slike par med#=t og #U = u
er skilde.

Skiljande kodar, eller system, er kjende fra kombinatorikken, og
dei har vorte nytta, under ymse namn, til vannmerking og kopivern.

Me skal finna nokre nye grenser, generaliseringar og konstruksjo-
ner for skiljande kodar.

Stikkord
skiljande system, snittande kode



Chapter 1

Introduction

The theory of separating systems has been appliedffierent areas of science
and technology such as automata synthesis, technical diagnosis, constructions of
hash functions, and authenticating ownership claims.

The following property and generalisations have been studied e.g. by Kérner
sociate in a natural way to every rowmof ann x M arrayT a bi-partition of the
set of coordinate® = {1,2,..., M}, i.e. apair{A,, B.} of disjoint subsets oF
such thatd, U B, = E. Then for any orderedtuple (j1,j2,..., Jj:) of E, there is
a bipartition which separatgg, jo. ..., Jw} from {jyi1,..., Jj:}. The problem of
finding the minimum size of such a separating family of partitions for arbitrary
| E| remains open. The case of &J-separation is introduced by Sagalovich in the
context of automata: two such systems transiting simultaneously fromastate
a’ and fromb to b’ respectively should be forbidden to pass through a common
intermediate state. He has written a long series of papers since the sixties, e.g.
[Sagbb] Sag75]; a fairly recent survey can be foundin [Sag94]. States are simply
binary n-tuples and only shortest paths are allowed during transitions; in other
words, the only ‘moves’ permitted while transiting framo o’ are complement-
ing thed(a, a’) bits wherea andd’ differ (one at a time). Clearly if the separation
property holds, no two such minimal-length paths betweandd’, andb andd’
will intersect.

The design of self-checking asynchronous networks has been a challenging
problem. Friedmann et al. JTEFGUG69] have shown that the unicode single-transition-
time asynchronous state assignment correspond,®)-(2and (21)-separating
systems.

Digital watermark is a perceptually invisible pattern embedded in a digital
image. The watermark can carry information about the owner of the image or
the recipient: watermarking for copyright protection, fingerprinting I8S98], or
traitor tracing [SW98]. Codes were introduced in [BS98] (see aiso [DSWO0O0]) as
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a method of ‘digital fingerprinting’ which prevents a coalition of a given size from
forging a copy with no member of the coalition being caught, or from framing an
innocent user.

The rest of this chapter will be spent on defining basic terminology and nota-
tion, whereas in the next section we will discover some bounds on the length and
distance of separating codes, as well as some constructions.

In Chapter 3, we will introduce generalised separation and hashing, and give
some more general results. Chapter 4 will be dealing with intersecting codes and
demonstrate the relation between separation and intersection.

We will try to summarise the known results in form of tables of rates in Chap-
ter[. Finally we will give some results on maximum weights in Chajpter 6.

1.1 Separating Codes

Let G be an additive group an¥ the set ofn-tuples overG. An (n, M) code
I'isanM-subsefl” C V. If G is a field ofg elements and” is a k-dimensional
subspac& =V, then we say that is a [, k], (linear) code.

The feasible seF (T") of some vector sef C V is

F(T):={(v1,..., ) €V |Vi,1<i<n 3(ay,..., ay) €T, a; =v;}.

In the case of fingerprinting, each user holds one codeword, and a coalition of
users make a sét of codewords; therF(T) is the set of (false) fingerprints they
can produce.

Definition 1
We say that a cod€ is (¢, u)-separating if, for any paiT, U) of disjoint subsets
of C where#T =t and#U = u, the feasible sets are disjoint, iE(T)N F(U) = 0.

In earlier works on watermarkingsz, ¢)-separating codes have been calldiC
(partially identifying codes)[CEODb] a¢rSFP (secure frameproof) [SWI8, SvTWO00,
SSWOQOD]. The current terminology appears to be older though [Sag94ferDi

ent special cases have also appeared in litteratures-filaeneproof codes from
[SSWOD] are justf( 1)-separating codes. The, (3-separating, binary codes has
also been studied in[Kor95].

Definition 2

A (t,u)-configuration is a paifT,U) of disjoint vector sets of sizesandu re-
spectively. We say thdil",U) is separated i¥ (T)n F(U) = @, and otherwise it
is non-separated. &,u)-NSC is a non-separatéd u)-configuration.



1.2. MINIMUM AND MAXIMUM WEIGHTS

A code is ¢, u)-separating if and only if it contains ne, {)-NSC. Obviously,
if Cis (¢,u)-separating, then it is alsa,¢)-separating, and/(«')-separating for
allY <rand allu’ <u.

Remark 1.1
If #:V+~ V is an automorphism, the(r,U) is a (¢t,u)-NSC if and only if
(z(T),z(U)) is a(t,u)-NSC.

Remark 1.2

If (T,U)isa(t,u)-NSC, thensoi§¢T+c,U +c) foranyce V. If T+c,U+cc C,
thenT,U c C’ for some cod&’ equivalenttaC. If Cis linear andl’, U c C, then
T+cU+ccC.

Remark L]l tells us that i is a linear {,u)-separating code, then so is any
equivalent code. Also, if" is a non-linear 4, u)-separating code, then so is any
equivalent code, by RemarkL.2.

1.2 Minimum and Maximum Weights
For any vectoc = (c, ..., ¢,) € V we define the support to be

x(c):={ilc; #0}.

For any subsef C V, the support is

2(8) = J x().

cesS

We define the weight of subsets and codewords to be the size of their support, and
denote itw(c) := #y(c) or w(S) :=#y(.5).

Let C be a linear code. Theth minimum support weighd, of C is the least
weight of anr-dimensional subcode af. The r-th maximum support weight
m, IS the largest weight of an-dimensional subcode @. Both these numbers
were first studied in[[HKMZ77], and the minimum support weight has received
quite some attention followind [Wei91], where it was called th# generalised
Hamming weight.

It is clear thatd; is the minimum distance of the code, and likewisgis the
maximum distance of the code; so these two numbers are defined also for non-
linear codes. Several general definitionsipexist for non-linear codes, but we
will not need any of them here.
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Chapter 2

Separation

The first section of this chapter is devoted to necessary conditions,fOF (

separation. We will start with lower bounds grin terms oft andt’. The second

half of the section will present bounds on the minimum and maximum distances.
In SectionZR2, we give sficient conditions for a code to be,@-separating

based on minimum and maximum weights. Finally, in Secfioh 2.3, we present

some constructions.

2.1 Bounds for linear codes

Proposition 1
Letaandb be two linearly independent codewords, and wfite {a,b+aea|a €
GF(q)}. Then(0,T) isa(q+ 1, 1)-NSC.

Proof: We shall prove that in every positianat least one codeword ifi has a
0. If b; = 0, this holds, so assuntg# 0. Thenb + (—ai‘l)bia has 0 in positior,
as required. O

Corollary 1
If C is g-ary, linear(z,t')-separating, themax{z,7'} < q.

This bound is tight in the binary case, sinceJRseparating, binary, linear codes
are known to exist (e.gl [Sag94]).

Theorem 1
If C is a non-binary, lineaft,')-separating, thert++ < g+ 1.

Proof: We have already proved that’ < ¢. It only remains to prove that we can
construct af,q+2—1)-NSC for allr such that X r < gq. Letag, a1, ..., a4-1 be
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all the fields elements, whermg = 0 anda; = 1. Leta andb be two independent
codewords. A g+2—1)-NSC is given by

({aoa, ..., a;—1a}, {a;@,a+agb, ..., a+az41-4b}).

First note thatv;a matched) on every position not iry(a), anda+ b matcha on
every position notiry(b). In every position iny(a)n y(b), we getr different field
values in the first set, angl+ 1 —¢ different field values from tha+ a;b. Since
there are only elements in the field, they cannot be separated. O

Proposition 2
If Cis alinear,(q, 1)-separating code, theim < n—k + 2.

Proof: We shall prove that ik —mj1 < k — 1, thenC cannot be 4, 1)-separating.
Consider a codeword of maximum weight and lef’ = {ac | a € GF(gq)}. Since

the code is linear, for every set #f— 2 coordinate positions, there exist at least
q—1 non-zero codewords which are zero on these positions. In particular, there is
a non-zero codewordwhich is zero on every position not j(c). Thus ([;a) is
a(g.1)-NSC. O

Proposition 3
If Cis alinear, binary(2, 2)-separating code, them < n—2(k — 2).

Proof: If kK <1, the result is trivial. Fok = 2, it only says that the all-one
codewordl cannot be in the cod€, lest ©,1;c,c+ 1) form a (22)-NSC for
ce C\{01).

We then turn to the cade> 3. We shall prove that it —m1 < 2(k — 2), then
C cannot be (2)-separating. Consider a codewardf maximum weight. Since
the code is linear, for every set #f— 2 coordinate positions, there exist at least
three non-zero codewords which are zero on these positions, and thus at least one
which is notc. In particular, there is a non-zero codewa@advhich is zero on
half the positions not iry(c), and oneb which is zero on the other half. Thus
(0,c;ab)isa (22)-NSC. O

Proposition 4
If C is non-binary, linear(t, 2)-separating, thed; > (r — 1)k.

Proof: Assume for a contradiction thag < (r — 1)k. We shall construct &,2)-

NSC. Letc be a codeword of minimum weight. By Remark]1.1, we can assume
thatcis one on every non-zero coordinate. Since the code is linear, for every set of
k —1 coordinates there exist at leagt(1) non-zero codewords which are zero on
these coordinates. For every sekafoordinates there exists at least one non-zero
codeword which are either one or zero on these coordinates. Hence there exist
t—1 codewordsay, ..., a;—1 such that at least one of them is either one or zero
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on every position iny(c). Hence Q,c;ac, ay, ..., a,—1) is a (2¢)-NSC for every
a#0,1. O

2.2 (2, 2)-separating codes

Let ¢/,c,a b be distinct vectors such thaid,c}, {a,b}) is a (22)-NSC. From
this assumption, we will derive some statements on the minimum and maximum
weights of any code which is not (2)-separating. This will give a fficient
condition for a code to be (2)-separating in Theorefm 2.

By RemarK L2, we can assume thiat 0; and by Remark7T].1, we can assume
thatc=(1,..., 1,0,...,0). We write

Letr be such that; =1 fori <r andc; =0 fori > r. Since Q,c;a,b) isa (22)-
NSC, there is no coordinatesuch that botla; ¢ {0,¢;} andb; € {0,¢;}.
We consider the sum

> :=d(0,a)+d(0,b)+d(ca)+d(cb)
=w(@)+w(b)+w(@a-c)+w(b-c).

We have trivially that
4d1 <Z < 4m. (2.1)

Consider now the matrix with ron@ ¢, a,b. Let x; be thei-th column in this
matrix. We have four main types of columns:

Type 0: x; =(0,0,0,0),

Typel: x; € {(0,0,0,a),(0,0,a,0)}, a#0,
Typella: x; € {(0,1,0,0),(0,1,1,1)},
Type llb: x; € {(0,1,0,1),(0,1,1,0)},
Typelll: x; € {(0,1,0,4),(0,1,5,0),(0,1,1,5),(0,1,5,1)}, p&{01}.

No other possibility exists because the rows form 2 2NSC. We have now that

=) o(x), (2.2)
i=1
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wherecs (X;) is 0 for Type 0, 2 for Types | and II, and 3 for Type Ill. Let denote
the number of columns of Type X. Then we get

n=vo+vi+vi+v, (2.3)
X =2vi+2v + 3. (2.4)

Proposition 5
If (O,c;a b)isa(2 2)-NSC, then

Y =w(c)+w(a-b)+w(a+b-c).
Proof: We have trivially that
n—w(C) =vo+v. (2.5)
Define two vectors

y=1y2....ym) =a+b-c
z2=(z1,22,...,20) :=a—h.

We have that

x; of Type O =>y,=0 A z,=0,

x; of Type | >y=1 AN z;=%1

x; of Type lla >y =21 AN z;=0,

x; of Type llb =>y;,=0 AN z;==%£1,

x; of Type lll >y e{pf -1} = {a#0}

Azi € {(£(f—1), 8} = {a # 0},
This gives

n—w(@+b-c)=n—w(y) =vo+vip,
n—w(@a—b)=n—w(z) = vo+vja.

By adding together the two equations above as wellas (2.5), we get
3n—(w(c)+w(a—b)+w(a+b—-c)) =3vg+viia+vip +vi.
From (Z4) and[(Z]3) we get that
> =3n-(3vo+viia+vip +v) = w(c)+w(a-b)+w(a+b-c),

as required. O

We observe that(a, b) = w(a—b) andd(0, ¢c) = w(c) are distances in the code;
hence they are bounded by . If C is linear,w(a+ b —c) is also a distance in the
code, and thus bounded by. If C is non-linear, we still haver(a+b—c) < n.
This gives directly the following theorem.

8
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Theorem 2
If a code satisfiedd, > 2mj +n, or if 4d1 > 3mq and it is linear, then it i$2, 2)-
separating.

Corollary 2
All linear, equidistant codes af@, 2)-separating. A non-linear, equidistant code
IS (2, 2)-separating iRdy > n.

The binary linear case of Theordin 2 has previously been proved by Sagalovich
[Sag75] (see alsd [Sag94]). The non-linear case of the corollary was proved in
[CEO1].

The non-linear case of the corollary is tight, in fact

C = {(1000) (0100) (0010) (0001)}

is an equidistant (4, 2) code, but it is not separating. The linear case of the
theorem is also tight, as the following example shows.

Example 2.1 From the proposition we get that(®, c; a, b) is a binary(2, 2)-NSC
and4d, = 3m1, then

w(c) =w(a—-b)=w(@a+b-c)=my =4I,
w(@) =w(b) =w(a—c)=w(b—-c)=dy =3l

It turns out that the only possibl€,2)-NSC is the following, or replications
thereof:

o] [ooo00
c| 11110
a| = |11001
bl [10100

Note that the linear codéa, b, c) has alsod; = 3andmy = 4.

Proposition 6
If C is binary, linear an@d1 > my, then itis(2, 2)-separating.

Proof: Let (0,c;a,b) be a (22)-NSC. We consider first the case whexe,
andc are linearly independent. Then+b, a+b+c, andc are the three non-zero
codewords in some 2-dimensional subca@leThus we get that

w(c)+w(a—b)+w(a+b-c) =2w((a+b,c)) < 2my, (2.6)
and by Proposition]5 that

4d1 <X =w(c)+w(a—b)+w(a+b—-c) < 2my.
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If &, b, andc are linearily dependent, then+ b+ c = 0, and (Z.p) becomes
w(c)+w(a—b)+w(a+b—-c) <2m,

which is stronger. O

It is easy to show that, < [3m1/2], which is a maximum support weight
analogue of the Griesmer bound. If this bound is not met with equality, then the
above result is stronger than that of Theoifgm 2.

2.3 (2, 2)-separating constructions

The next results provide a way to combinedRseparating codes into new ones.

Theorem 3[NT78]

Let M = M1 M>, with M2 > M, and M> is not divisible either by 2 or by 3.
SupposeCy(n1, M1) andCa(n2, M) are binary(2, 2)-separating. Then there is a
(2, 2)-separatindn, M) code withn = ny + 4no.

Example 2.2 Suppose we tak@&, = Co whereM1 =11 n; =11, thenM =121 n=
55. Applying Theoreni] 3 again, witt (11, 11) andC2(55,121), leads to &2, 2)-
separating code witiM = 1331 n =231

Take nowM1 = M =13 ny = np = 13, thenM = 169 n = 65.
Applying Theorenf]3 a second time wiéhy = 13 n1 = 13and M, = 169 n1 = 65
leads to &2, 2)-separating code witM = 1859 = 273

It is relatively easy to apply Theoreli 2 on codes with few weights, such as the
following examples with two- and three-weight codes.

Example 2.3 Take a linear projective code ov&F (p?) [Chad0] with length

Ol 0 it )
_ e ,

dimensionk; and weightsyy = p?173 wy = p?1=3 4 (—p)k1—2,
In the case = 2 for k1 = 4 it gives a(45,4%)4 code, which i€2, 2)-separating
since it satisfiedd, > 3m1.

Example 2.4 A three-weight code ové&iF(p) is given in [Cha90] with length

n=p+1+p°(p" 7 = (-1 (02 - (-1)97%) /(p- 1),

dimensiork = 2k1 and weightsvy = p?172 — (—=p)kt — (=p)k17L wp = p?172 Yo =
P72 = (=p)".

10
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In the binary case fok = 6 it gives a(39, 2%), code, which i$2, 2)-separating
since it satisfiedd;, > 3m.

11
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Chapter 3

Generalised separation and hashing

A (n,m, {w1, wz})-separating hash family, as definedin [SWWZ00], is the same as a
(w1, wo)-separatingm-ary code of cardinality. The perfect hash families studied

in [SW.Z00] can also be viewed as a variant of separating codes, if we adopt the
following definition.

Definition 3
A sequencdTy, ..., T,) of pairwise disjoint vector sets is called(a, ..., t7)-
configuration if#T; = ¢; for all j. Such a configuration is separated if there is
a positioni, such that for all # I’ every vector off; is different from every vector
of Ty on positioni.

A code is(z1,..., t,)-separating if everyrs, ..., t.)-configuration is separated.

For z = 2, this definition coincides with the previous one. ¥ (g, z)-perfect
hash family from [SWZ00] is a (14, ..., 1)-separating (witly ones) ¢, M) code.
For brevity, we will say that such a codegshashing. The#(u)-partial hashing
[BCEFO1]is (L1,..., 1,u—t)-separation (with ones) in our terminology.

3.1 Basic results

Define
-1 z
P(ty,...t:) =) ) tit;. (3.1)
i=1 j=i+1

P(t1,....1,) = (Z) (3.2)

13



CHAPTER 3. GENERALISED SEPARATION AND HASHING

and ifz = 2, then

P(t1,12) = t1t2. (3.3)

The following proposition generalises the results on separating and perfect hash-
ing families from [SWZ00["Al086].

Proposition 7
An (n, M,d), codel' is (t1,..., t.)-separating if

d 1

->1-—

n P(t1,..., t7)
Proof: Supposé&'isnon-{y,..., t.)-separating, and consider some non-separated
(t1,..., t.)-configuration {7y, ..., T,) and the sum

=1 z
Z:=Z Z Z d(x,y).

i=1 j=i+1(x.y)eT;xT;

This is the sum ofP(z4, ..., t.) distances in the code, &> P(11,..., t.)d. Each
coordinate can contribute at maBfzy, .. ., t.) to the suni, but if any coordinate

does contribute that much, then the configuration is separated on this coordinate.
Hence each coordinate can contribute at nR@t, .. ., t,)— 1 to the suni, and

we get

P(tq,..., t.)d<Z<(P(ty,..., t;)—1)n.

Simplifying this, we get that any nony(...,7,)-separating code must satisfy

and the proposition follows. ad

It must be noted that, to get infinite families of separating codes with good rate,
the alphabet sizg grows extremely rapidly in thg-s, due to the Plotkin bound.
However, better separating codes can be built by concatenation. Though this con-
struction is well-known in various special cases from the literature [Alo86], we
have not found as general a statement as the one we give below.

Proposition 8

IfI'risa(ry, ..., t.)-separatingM’-ary (n1, M) code andz a(z4, ..., t,)-Separating,
g-ary, (n2, M') code, then the concatenated cdde=T201"1 is a (t1,..., t,)-
separatingninp, M), code.

14
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Proof:  Consider afy,..., t.)-configuration {4, ..., T;) in . Then there is a
corresponding configuration iry, (77, .. ., T}') which is separated on some coor-
dinatei by assumption. Considering only the positiond aforresponding to po-
sitioni in T2, we getafy, ..., #;)-configuration (7, ..., T;) in Iy where 1< #; <1,
for all j. Since alsd™1 is (f1, ..., t;)-separating, 1., . .., T;) is separated on some
position;. Hence (7, .. ., T,) must be separated, as required. O

Note that the only thing we know about the minimum distanc€ &f that it
is at least equal to that @f;. In general the concatenated code will not satisfy the
requirement of Propositiofy 7. We will give a thorough example of the technique
in Section=32.

Proposition 9
If Cisalinear(ts,..., t,)-Separating code ang> 3, thenZ;ltj <q.

Recall that the case when= 2 was solved in Theorem 1.
Proof: First we prove that; + > < ¢, for if

T1UT, D {ac| a € GF(q)},

then no third sef3 will be separated frorify andT5.
Letag, a1,..., a4-1 be all the field elements, wheog = 0 anda; = 1. Leta
andb be two independent codewords. Let

T1:={aoa, ..., a,l_la} ,

T :={aya,..., ar,—18},

and letTs, ..., T, be any sequence of pairwise disjoint sets such that

wheret’ =13+...+1,. Clearly,Ty andT> are only separated gn(a). Also T and
Ty are only separated gn(b). On any coordinatee y(a) N y(b), t1 +1> different
values occur ify UT» and?’ different values occur ifi. Hence the configuration
can only be separated if

f+t+tr2=11+...+1,<q,
as required. O

Corollary 3
If Cis alinearg-ary, (t,u)-partially hashing code with> 2, thenu < gq.

These bounds are tight, singéhashing codes can be constructed for any

15
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3.2 The tetracode and compositions thereof

The ternary constructions will make use of three ingredient codes, and apply twice
the concatenation method.
The first seed is the remarkable 243]; tetracodet, defined by the generator

matrix
111
G:lo 12 (11

This code is self-dual and MDS (on Singleton’s bouhd n—k + 1). It is both
an extended perfect Hamming code and a simplex (all codewords are at distance
3 apart). The next result is a consequence of The@fem 2 and Propg@sition 7.

Proposition 10
Thel4, 2, 3]s tetracode is botli2, 2)- and(3, 1)-separating, an8-hashing.

This proposition is not new. The tetracode was proved 3-hashingin [KM88],
and it was proved to have the IPP propertylin [HvL 1TT98]. The codes constructed
in the sequel are also 3-hashing, but we do not claim that they are particularly good
compared to existing codes. Our main interest j2)2and (31)-separation after
all.

Let R be the [93, 7]32 Reed-Solomon code, which is both 22- and (13)-
separating, and 3-hashing by Propositibn 7. The concatenatediceth has
parameters [3®]3, and by Propositiof] 8, it is (2)- and (13)-separating, and
3-hashing. In order to produce infinite families of separating codes, we need the
following constructive result from Tsfasmann[Tsf91].

Lemma 1l
For anya > Othere is an infinite families of cod@§ V') with parameterfN, N R, N¢é],
for N > No(a) and

R+6>1-(vg-1)1t-a.

We should note that the rate 9{ V) is interesting only for large, butT o R,
allows for concatenation witel(N) over GF(3°) which may be acceptable. Thus
consider the family of N, K, D = [3N/4] + 1]z codes?(N), which has rate
R ~1/4—(3®-1)"1=11/52. The concatenated code R o A(N) gives an
infinite family of linear, ternary (31)- and (22)-separating and 3-hashing codes
with rate R’ /6 ~ 0.0352.

If we only want (31)-separating and 3-hashing codes, we can obtain a better
rate by using the Reed-Solomon cd#te with parameters [1@, 7]32, which re-
sults in the concatenated co@e R, with parameters [4@]3. Then we take the
infinite family 2((/V) of codes with parametersV K, D = [2N /3] + 1]3s of rate

16



3.2. THE TETRACODE AND COMPOSITIONS THEREOF

1/3—(3*-1)"1, and the concatenated co@e 9, o A(N) is an infinite family
of linear ternary (31)-separating and 3-hashing codes with rate approximately
77/1200~ 0.0642.

Example 3.1 We sketch a construction with= 4 as well. As in the previous
example, we concatenate three codes to build the infinite family. Each code has
d/n> 3/4 and thus iq2, 2)-separating by Propositiofj 7. The first two are doubly
extended Reed-Solomon codes. We take successively:

1. C1[5,2, 4]4;
2. Co[17,5,13]42, gettingC1 o C2[85, 10]4;

3. and finally,C(N)[N, K, D = [3N/4] + 1] 40 with ratex 1/4— (4°— 1)1 »
1/4.

The final outcome is an infinite constructive family of linear quatern@g)-
separating codes with rate approximatély34 ~ 0.029

17
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Chapter 4

Intersecting codes

Intersecting codes is another known concept from the literature. In this chapter
we will see how we can construct separating codes from intersecting codes.

Definition 4

A linear codeC of dimensionk >t is said to be-wise intersecting if anylinearly
independent codewords have intersecting supports: Af, we say that is r-wise
intersecting if and only if it isk-wise intersecting.

Itis easy to verify that anywise intersecting code is also{1)-wise intersecting.

4.1 How intersecting codes give separation

Proposition 11
For a linear, binary code, the following properties are equivalent:

1. 3-wise intersection;
2. (2,2)-separation.

The fact that linear, (2)-separating codes must be 3-wise intersecting holds
not only for binary codes, and itis proved in Proposifion 12 below. Unfortunately,
this is the only result we have found in the non-binary case.

The fact thatt-wise intersecting, binary codes gives rise to separating codes
can be generalised. The statement of the proposition, toffeet ¢hat 1 implies
2, will follow from the special case= 3, j = 2 of Propositiorj 14 below.

Proposition 12
Every linear(2, 2)-separating code is 3-wise intersecting.
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CHAPTER 4. INTERSECTING CODES

Proof: If kK =2, three-wise intersection is equivalent to 2-wise intersection
according to our definition. Any (2)-separating code is (2)-separating and
hence 2-wise-intersecting by [CEDOa].

SupposeC is (2 2)-separating, and consider three independent codewords
a,b,c. We shall prove that these three words have intersecting supports. Con-
sider the (22)-configuration Q,c+a;a,b). SinceC is (2 2)-separating, there is
a positioni whereais a # 0 andb is p # 0, andc+aisy & {a,f}. Nowcis
y —a # 0 on position:. O

Due to this proposition, we can use many bounds on separating codes as
bounds on intersecting codes. For instance, by Thediem 2, every code with
4d > 3m is 3-wise intersecting. In the binary case, we get that-2n, implies
3-wise intersection by Propositigh 6.

Proposition 13

If Cis at-wise intersecting, binary, linear code, dnd C is a nonlinear subcode
such that anynon-zero codewords are linearly independent, the(j, 1+ 1— j)-
separating for alj such thatl < j <.

Proof: Choose any (two-part) sequenceof ¢t + 1 codewords front’,

By Remark,Y’ is (j,t+ 1— j)-separated if and only i := Y’ -

_ 1) 1S
Hence it stiices to show that

is (j,t+ 1— j)-separated.
Since anyr codewords iny’ are linearly independent, so are thirst code-
words ofY. The zero vector is of course not independent of anything.
Now, consider
{ap+cCy,..., a+C_j;an,..., a;},

which is a set of linearly independent codewords frépand hence all non-zero
on some coordinate Sincea; + ¢; is non-zero on coordinate ¢; must be zero
for all [. HenceY, and consequently’, is separated on coordinate O

Proposition 14

If C is atr-wise intersecting binary linear code, and C is a nonlinear subcode
such that any — 1 non-zero codewords are linearly independent, thés(j, 7+
1— j)-separating for all evepsuch thatl < j < t.

Proof: We defineY as in the previous proof, and the 1 first codewords ot
are linearly independent. ¢f_; is linearly independent of the others, then we are
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done by the first proof; hence we assume that is dependent on the-1 first
codewords, and since amy 1 codewords are independent, it must in fact be the
sum of ther — 1 first codewords.
By the same argument as in the previous proof, we get one coordjndtiere
a1+cC,..., q+Co1-ja,..., a; are all one, andy, ..., Ci—1—; are zero. Nowe,_;
is the sum of the — 1 first codewords, of which are 1 and the rest are zero on
coordinate. Sincej is eveng,_; is zero andr is separated. O
Note that ifz is even, then eithgrorz+1— j is even; thus we get the following
corollary.

Corollary 4

If C is ar-wise intersecting, linear, binary code for eveandI” C C is a nonlinear
subcode such that amy- 1 non-zero codewords are linearly independent, then
IS (j,t+ 1— j)-separating for alf such thatl < j <.

A 3-wise intersecting, binary code is,@-separating according to the above
proposition, but no binary linear code is, {3-separating; hence the restriction
thatj be even cannot be dropped in general.

It is perhaps not obvious how these propositions may be used to construct
non-linear separating codes with a reasonable rate. The remainder of the section
is devoted to explaining this.

Lemma 2
Given an[n, rm+ 1] linear, binary cod&”, we can extract a non-linear subcdde
of size2” + 1 such that angm + 1 codewords are linearly independent.

Note that the rate df is approximatelyR /m whereR = (rm+1)/n is the rate
of C.
Proof: LetC’ bethe[Z,2"—1—rm,2m+ 2] extended BCH code. The columns
of the parity check matrix of” make a sef” of 2" vectors fromGF(2)*+1, such
that any 22+ 1 of them are linearly independent. Now there is an isomorphism
¢: GF(2)y™1 - C, soletl’ = ¢(I")u {0}. O

Theorem 4

Given an[n, nR] t-wise intersecting binary (asymptotical) code, there is a con-
struction of a non-linear codE of rate R/ [(t—1)/2], which is (j,t + 1— j)-
separating.

Proof: First consider even, and write = 2m + 2, wherem > 0, the case = 2

is trivial from PropositiorT 11, anyway. By Propositipn 14, we want to extfact
such that any 2 + 1 codewords are independent, and sLickxist with rateR /m
by LemmaR.
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Then consider odd, and writer = 2m + 1, wherem > 0. By Propositiori 13,
we want to extrack’ such that any 2+ 1 codewords are independent, and slich
exist with rateR/m by LemmaR. O

Example 4.1 In [CZ94], it was shown that for dficiently largen, and for any
rate R<1- % log(2 — 1), there arer-wise intersecting linear, binarfy, k] codes

of rate R. Though non-constructive, this result guarantees the existence, for any
t, of non-linear, binary codes which afg ¢ + 1 — j)-separating for allj and have

rate arbitrarily close to

1-1log(2-1)
[(r=1)/2]

4.2 Binary constructions

In this section we will give some sample constructions of separating codes, based
on results on-wise intersection from_[CZ94].

Proposition 15[C794]
The punctured dual of th-error-correcting BCH code with paramet§2$/+1 —
2,414 2,2% —2' — 1], ist-wise intersecting.

Example 4.2 For t = 4, we get from Proposition 15 4-wise intersecting code
with parameterd2® —2,18]. Now the shortende codé of the 21’ codewords
having a 1 in the last position (say) is clearly such that any 3 of its elements
are independent, thus we get( 2)-separating(2® — 3,217+ 1) codel’ :=T" U

{0} by Corollary[4. We can concatenalewith the code(N) with parameters
[N,RN,5N/6+ 1],18 from Lemmd]l to get &3, 2)-separating code with rate

R ~ 0.00557

If I'(n, M) is (¢,1')-separating, then so are the 2 subcddg&esp.I'1) having
0 (resp. 1) in the first coordinate. Taking the largest and removing the first co-
ordinate (which no longer separates anything), gives a shortened, (M /2])
(z,')-separating code.

Proposition 16
There is a constructive infinite sequence of bingty + 1 — j)-separating codes
of rate273¢-1(1+o(1)).

This proposition follows directly from the following lemma:
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Lemma 3[C794]
There is a constructive infinite sequence-gfise intersecting binary codes with
rate arbitrarily close to

1 2t+1
_ [ o1t _ 92-3
R, = <2 - 22:+1_1> a1 27 (t+0(1)).
Proof: By concatenating geometrieV] K, D], codes from Lemm§g 1 satisfying
D > N(1-2%") with g = 2%*+2, and with a rate arbitrarily close tdZ —1/(y/g—

1), with the [2+1 -2 4r +2,2% — 2! — 1] code of Propositiofi 15, we obtain the
result. O

Example 4.3 The 3-wise binary intersectifi@26, 14] code (case = 3 of Propo-
sition[1%), yields g2, 2)-separating code with parametef$26, 214).

Example 4.4 Letq = p®". Consider (see Lemnfa 1) a family of co@gsV) with
parameterd N, N R, Né], with N > No(a) and

R+6>1-(p"-1)1-a.

Choosingp =2,m =7, 6 = 3/4+ ¢, (see Propositiori] 7) and concatenating
2A(N) andC, the binary[126, 14, 55] code, yields a constructive infinite sequence
{A(N) o C} n of binary linear(2, 2)-separating codes with rates arbitrarily close
t0 0.026

4.3 Upper bounds on intersecting codes

We now present an upper bound on the rate of such codes.

Theorem 5
A t-wise intersecting cod€[n, k,d] gives rise by projection to & — 1)-wise
intersecting cod€;_1[d, k —1].

Proof: Leta € C be a fixed element of minimum weighit Denote byC, the
[n, k—1] supplementary subspace{df «} in C. Consider anys(~ 1) independent
codewords{b?,..., b1} in C,. Then{a,bl,..., "1} is full rank, hence these
codewords ol intersect (on the support @j. ThusC/a, the projection ofC, on
the support otz is a ( — 1)-intersecting4, k — 1] code. O

To get an upper bound on the dimension of such codes in the binary case, we
use recursively any upper bound from coding theory, for instance the McEliece et
al. bound (see IMST7]):

1 d d
wem(3-of2 (1)
n
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Fort = 3, we get the following sequence of codes:
Ca[n k,d], Cold k—1,d], Cid k-2],

whereC; is i-wise intersecting, and has write rake.
FromCj, we have thak — 2 < d’, which implies that

Ry=(k—-1)/d<(d'-1)/d<d'/d.
By the McEliece bound, this implieR, < 0.28. Finally we have

R1=§S%§0.108
n n
where the final bound follows by applying again the McEliece bound. The fol-
lowing corollary arise from the same technique and some other values for

Corollary 5
The asymptotic rate of the largestise intersecting binary code is at magt,
with Ry ~ 0.28 R3 ~ 0.108 R4 ~ 0.046 R5 ~ 0.021 Rg ~ 0.0099

Note that the McEliece bound is only valid asymptotically. In particular, the
[126,14] 3-wise intersecting code from Example]4.3 has rg&> Rs.

4.4  An upper bound on separation

An extension of arguments from [Sa®94] and [KIS88] gives the following theorem.

Theorem 6
If I';(n=d;—1, M;,d;) is (i, j)-separating, then it gives rise by projection to a code
I';+1 with the following properties:

1. T'i41is (i — 1, j —1)-separating, with parametef@;, M;.1 = M; —2,d;1);

2. qdi+1 > M,' -2

Proof: Itis based onthe cage=i=j =2 studied in[KS88]. Lel’; be like in the
statement of the theorem. With no loss of generality, it contains two codewords
a,d’ differing exactly in the first/; coordinates. Now any two non-intersecting
coalitionsT, T’ of respective sizesand;, with a € T, a’ € T' have nonintersecting
feasible sets by hypothesis. Sincanda’ coincide on coordinategi; +1, .. ., n},

this property is kept by projecting ofi, .. ., d;} and removing: andd’ from their
respective coalitions. This provgs 1. To et 2, just note that all projections must
be diferent at the first iteration (when= 2) and apply induction. g
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We have, by use of non-binary linear programming bounds (See [Aal90]):

R(6) < Hy(((—-1)-(¢—2)6-2v(¢—-1)6(1-6))/q).

In the ternary case, this gives the following upperbounds on the rates)ef (
separating codes .867,0.168 0.09 fort = 2, 3,4 respectively.

In the linear ternary case, the previous bounds are shifted, givirG3®.09
for t = 2,3 respectively.
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Chapter 5

Asymptotic Results

5.1 Binary Codes

In Table[5.11, we present some upper and lower bounds for codes \ffigheahit
separating capabilities. Most of the bounds are known from previous works, the
rest is given in form of examples in this section.

Example 5.1 Let C be a 4-wise intersecting code with rate

log 15

R~R=1- ~ 0.0233

as described in Example #.1. Make a non-linear subdodeC as in Lemma]2
such that any three codewords are linearly independent. This givEs2-
separating code with rat®& / [ (r—1)/2] = R ~ 0.0233

Lemma 4
Given an[n, rm] linear, binary code”, we can extract a non-linear subcddef
size2" such that angm non-zero codewords are linearly independent.

Proof: LetC' bethe [2-12"—-1-rm,2m+ 1] BCH code. The columns

of the parity check matrix o€’ make a sef” of 2" — 1 vectors fromGF(2)"™,
such that no & of them are linearly independent. Now there is an isomorphism
¢: GF(2)™ — C, soletl' = ¢(I"") U {0}. O

Example 5.2 For t = 5, we get from Proposition 15 &wise intersecting code
with parameterg21! — 2,22], which leads to a non-linea(3, 3)-separating code
I" with rate R’ ~ 11/2046by Lemmd 4. We concatendtewith the code(N)
with parameter§ N, RN, 8N /9+ 1],22 from Lemma]1 to obtain €8, 3)-separating
code with rateR ~ 1/1674= 0.000597
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Lower bounds Upper bounc
Linear Non-Linear Linear NC
(1.7') | Const.] Non-const. Const. | Non-const.
(2,1) | 0.156 0.21 — 0.21 [Kor95] 0.28 0.5
(31)| N/A N/A 0.0448 [CED0a] — N/A
(4,1)| NA N/A 0.0181 [CEOOa] — N/A
(2,2) | 0.026'| 0.0642 [Sag94] — 0.0642 [Sag94] | 0.108 [CELO1]| 0.2¢
(3.2) | N/A N/A 0.00557 0.0233 N/A
(33)| N/A N/A 0.000597 0.0156 [BCE01] N/A 0.065

1 Bounds from intersecting codes [CZ94].
2 Example4.p.
3 Example5.]1.
4 Example4.14.
5 Examplg5.0.

Table 5.1: Bounds on rates for infinite families of binary codes with various sep-
arating properties.

5.2 Onlinear (2, 2)-separation

We will dwell a little extra on the case of (2)-separation, and present existence
proof of codes with certain rates oveffférent fields. The first lemma is fairly
well-known, and can be found in [MS77].

Lemma5
Asymptotically, for almost all codes, we have

(’;)(q_ ]_)’ N enH(i/n)ziln(q—l)

Ai = g 0=R) ~  gn(I-R)ing

whereH is the natural entropy function amtl= k /n is the rate.

Since we are dealing with the asymptotical case, we normalise by seting
nw, and we define a functiofi(w, R, q) by

Apn = A; = " (@ RO,
From Lemm4g]5, we get
f(w, R q)=H(w)+wln(¢g—1)—(1-R)Ing. (5.1)

Note that for a givem4;, there are two solutions far SettingA; ~ 1, the two
solutions will be the minimum and the maximum weights. These are of course
also the zeroes of.
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Technique |

Technique Il

Others

5max

5|

Rate

)

| Rate

Rate

0.5000
0.6667
0.7500
0.8000
0.8571
0.8750
0.8889

0.75
0.75
0.75
0.75
0.75
0.75
0.75

N/A

N/A

N/A
0.00459
0.02043
0.02774
0.03427

0.4286
0.5695
0.6385
0.6786
0.7218
0.7340
0.7426

0.01477
0.01859
0.02206
0.02532
0.03153
0.03457
0.03766

0.0642 [Sag94]
0.0352
0.02%

0.9091
0.9231
0.9375

0.75
0.75
0.75

0.04530
0.05417
0.06464
0.9412| 0.75| 0.06757|| N/A N/A
19| 0.9474| 0.75| 0.07279|| N/A N/A

1 The concatenated cof& 11 o A(N) from Sectior 3]2. (Construc-
tive.)
2 Exampld 3]1. (Constructive.)

N/A
N/A
N/A

N/A
N/A
N/A

Table 5.2: Rates for which we can guarantee the asymptotical existence
of linear (2 2)-separating codes. The numldgfax = (¢ —1)/q is the
maximum possible minimum distance by the Plotkin bound.

Let 6 = d1/n andu = m1/n be respectively the minimum and maximum nor-
malised weights. Becaugeandsé are the zeroes of, we get

H(6)+6In(g—1) = H(u) + uin(g—-1),
or

(6-u)In(g—1) = 8INs+ (1—6)In(1—6)

2
= (1= ) In(1— ). (5-2)

Lemma 6 (Varshamov-Gilbert)
For almost all codes, the rate and the normalised minimum distance are related by
the following equation

H(5)+6In(g—1)= (1- R)Ing.

Proof: This follows from equatingf(w, R,q) =0 as in [5.11). O
We know from Propositiof] 7 that & > 3/4, then the code is (2)-separating,
hence we can, by substituting= 3/4 in the Gilbert-Varshamov equation, get

29



CHAPTER 5. ASYMPTOTIC RESULTS

rates for which asymptotically almost any code is22separating. The rates
such obtained are presented under ‘Technique I’ in TabJe 5.2. Due to the Plotkin
bound, this does not give anything over small fields.

Technique 1l in the table is an improvement based on The@fem 2, which says
that every code with8> 3y is 2-separating. We inseft= 4u/3 in (5:2), and get

gm@—1)=Mna+a-5nm1—®
45 45

4 4
- Ing -(1-3)n-3),

We have solved this equation numerically for the smallest fields, and the results
are given in Tabl€5.2. Of course, we will always have

(5.3)

0<sé<u<l

which will boundé < 3/4 in (6:3). This results in no real solution df (5.3) for
g>11.
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Chapter 6

Anticodes and Maximum Weights

We have used minimum and maximum support weights a couple of times in this
report. Whereas minimum support weights are much studied, the results on max-
imum weights are rare. It is well-known though, that for linear codes, we have a
connection between minimum and maximum weights through anticodes. In fact,
any bound on minimum weights can be turned into a bound on maximum weights.
Some of the idea behind maximum support weights is ityag provide a
bound on the size aof (T') for any coalitionT” of sizet. A coalition is a subsef C
C, and it is clear that the detectable bits are thosg(ifi).” Hence #(T') < ¢!
wherer = #T.

6.1 Preliminaries
A linear [n, k] codeC overGF(g) can be represented by a projective multiset
y: PG(k-1,49)— {0,1,2,...},

wherePG(k — 1,q) is the projective k — 1)-space ovekF(g), andy(x) is the
number of timesc occurs as a column in the generator maginf C.
We extend the multiset to the power set:

7(S)= Y 7(x). VSCPG(k—1q).

x€S

The code has lengtth= y(PG(k — 1, ¢)). The number(.S) is called the value of
S.
Let

b0 :=max{y(x) | xe PG(k—-1,q)}.

31
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If 60 =1,y is asetand” is a projective code.
Theanticodeof C is defined [DS98] by the multiset, given by

Y'(x)=60—y(x), xe€PG(k-1q). (6.1)

We have defined the minimum and maximum support weight@ndm, for
the codeC. From previous works on projective multisels [HKY92,_TV95] it is
well known that for each subcod®, C C of dimensionr, there is is a subspace
IMx_1-» € PG(k —1,q) of codimensiornr, such that

y(Mk-1-) + w(Dy) = n.

Therefore the maximum value of a subspace of codimensiem — d,, and the
minimum value of such a subspaceuis m,. It follows from the same argument
thatdy — dix—1 = do.

Consider the value dfl;_;_, in the anticode. There arg™" —1)/(¢—1)
points inIlx_1—,. Hence we get from(8.1) that

k—r _

Y (1) = S0
g—1

— ¥ (Mg-1-r). (6.2)

It is obvious from this equation that a subcode of minimum weigldt imas max-
imum weight in the anticode (and vice versa).

Lemma 7
If Cis an[n, k] code, then the length of its anticode is

k-1
n' =g — "
Proof: From (6.2), we get that
k_1 k_1
W =10 (PG(k=1.9)) = b0 — ~7c(PG(k = 1.9) =do"— —n

a

Lemma 8
If (d1,....dyx) is the weight hierarchy of, and(d;. . ... d},) the weight hierarchy
of its anticode, then

k k—r
q —q
m;. = (dk—dk_l)?—dr,
k _ k—r
d, = (dk—dk—l)l—mr-
q—1
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Proof: From (6.2) we get that

k—r_l
W =i, = (d —di-)) === (1= dy).
k—r
’ ' -1
W —d, = (dy — dg_1) L —(n—m,).
g-—1
If we apply Lemm4d]7, we get
k_l k—r _
m’,:éoq 1—n—5oq +(n-d,)
k k—r
q —q
=0 _dr,
0 -1
qk—r
d, = (dx —dk-1) —(n—m,)
k k—r
qa —q
- 60 q—l _mr;
as required. O

To find codes with low values for, we can search for codes with high mini-
mum support weights; and a low valuég. Probably we can restrict ourselves to
projective codes, such thég = 1.

Remark 6.1

Let C’ be the anticode o€. ThenC is the anticode of”’ if and only if there
IS some pointc € PG(k — 1, q) of valueyc(x) = 0. In other words if and only if
60(C) = 60(C").

6.2 Turning the Griesmer Bound

A well-known bound on the minimum support weights, is the Griesmer Bound,
which we state below. We will show that, via anticodes, the Griesmer Bound
induces a bound on the maximum support weights.

Lemma 9 (Griesmer Bound)
For any linear code, we have
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Proposition 17 (Remseirg Bound)
For any linear code, we have

r—1
mq
i=0
Proof: From Lemmd]8, we have

k _ k—r
m, = 56% —d;

We apply the Griesmer bound to get

i=0
q 1 r r—1 m1
_ ot _k—r _ k—i _ -
e Wb B
i=1 i=0
-1 r—1 m
= (8- b0)g" "+ l—1|
-1 prs ql

By the definition of anticoded(8.1), it is clear th&t< 6o, thus the proposition
follows. O
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