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Abstract

Separating codes (or systems) are known from combinatorics, and
they enjoy increasing attention due to applications in digital finger-
printing. Previous applications are found in automata theory and the
construction of fault-tolerant systems.

LetΓ be a code of lengthn, and (T,U ) a pair of disjoint subsets of
Γ. We say that (T,U ) is separated if there exists a coordinatei, such
that for any codeword (c1, . . . , cn) ∈ T and any codeword (c′1, . . . , c

′
n) ∈

U , ci 6= c′i. The codeΓ is (t,u)-separating if all pairs (T,U ) with
#T = t and #U = u are separated.

In this report, we give an overview of existing techniques for
bounding the asymptotical rate of separating codes, including some
constructions and construction techniques. We provide numerical re-
sults for binary (t,u)-separating codes for some small values oft and
u. The report includes both old and new results.
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Synthèse asymptotique sur les codes séparants

Résumé
Les codes, ou systèmes, séparants sont connus en Combinatoire ;

ils ont été utilisés, sous des vocables divers, dans des problèmes de ta-
touage numérique. Les premières utilisations de ce concept remontent
à la théorie des automates et aux systèmes tolérant les fautes.

SoitΓ un code de longeurn, et (T,U ) un couple de sous-ensembles
disjoints deΓ. On dit que (T,U ) est séparé s’il existe une positioni
telle que pour tout mot (c1, . . . , cn) ∈ T et tout mot (c′1, . . . , c

′
n) ∈ U ,

ci 6= c′i. Le codeΓ est dit (t,u)-séparant si tout tel couple où #T = t et
#U = u est séparé.

Nous présentons de nouvelles et d’anciennes bornes, des générali-
sations et des constructions de codes séparants. Nous fournissons des
résultats numériques pour les petites valeurs det etu.

Mots-clefs
système séparant, code intersectant

Asymptotisk oversyn over skiljande kodar

Samandrag
Me kjenner skiljande kodar frå kombinatorikken. I dei siste åra

har dei dukka opp i samband med digital fingerprenting. Andre bruks-
område er i autamatateori og konstruksjon av feil-tolerante system.

Lat Γ vera ein kode med lengdn, og lat (T,U ) vera eit par av
disjunkte delmengder avΓ. Me seier at (T,U ) er skilt dersom det er
ein plassi slik at for alle ord (c1, . . . , cn) ∈ T og alle ord (c′1, . . . , c

′
n) ∈

U , har meci 6= c′i. KodenΓ er skiljande om alle slike par med #T = t
og #U = u er skilde.

Rapporten gjev eit oversyn over kjende teknikkar for å finna skran-
kar for den asymptotiske raten til skiljande kodar. Me får og med eit
par eksplisitte konstruksjonar, og me gjev numeriske resultat for bi-
nære (t,u)-skiljande kodar for somme små verdiar avt og u. Rappor-
ten omfattar både nye og gamle resultat.

Stikkord
skiljande system, snittande kode
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Preface

A couple of years ago, we wrote a report on separating codes [CES01]. During the
time that has passed, several new results have emerged. This report is an update
of the previous one, including the results we have published in [CES02, CELS01,
CS03b, CS03a]. We also present some new results which we hope to publish in
the near future.

It must also be mentioned that some errors has been found in [CES01]. The-
orem 9 is somewhat weaker than the corresponding, incorrect propositions in
[CES01] and [CELS01]. In addition there were a few misprints, which have been
corrected, particularly the best constructible rate of (3,1)- and (3,3)-SS (in Ta-
ble 5.1 in the old version).
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Chapter 1

Introduction

The theory of separating systems has been applied in different areas of science
and technology such as automata synthesis, technical diagnosis, constructions of
hash functions, and authenticating ownership claims. We will make a formal and
general definition in the next chapter. Separating systems is a combinatorial con-
cept, which have been described in different frameworks and languages, some of
which we are going to exemplify in the introduction.

The case of (2,2)-separation is introduced by Sagalovich in the context of
automata: two such systems transiting simultaneously from statea to a′ and from
b to b′ respectively should be forbidden to pass through a common intermediate
state. A state of the system in this case is ann-bit binary string, and the moving
from one state to another is obtained by flipping bits one by one. Only shortest
paths from the old to the new state are allowed, so moving froma to a′ will
only involve flipping bits wherea anda′ differ. The set of valid statesΓ forms a
(2,2)-separating system, if for any four distinct states,a, a′, b, andb′ from Γ, the
transitionsa→ a′ andb→ b′ cannot pass through any common state. Sagalovich’s
contribution on this topic is substantial, e.g. [Sag65, Sag75]; a fairly recent survey
can be found in [Sag94].

The recent interest in separating codes comes mainly from digital fingerprint-
ing [BS98]. A vendor distributes digital copies of a copyrighted work, and she
wants to prevent the users from making illegal copies. A digital watermark is a
perceptually invisible pattern embedded in a digital file. Watermarking can be
used to give every sold copy a unique ID, a digital fingerprint, identifying the
buyer. If an illegal copy subsequently appears, the user guilty of copying may be
identified and prosecuted.

An interesting combinatorial problem arise in the venture to protect against
coalitions of pirates. If several users collude, they may compare their copies, and
every differing bit must be part of the fingerprint. Thus having identified part
of the fingerprint, the pirates may also change it and produce illegal copies with
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CHAPTER 1. INTRODUCTION

invalid fingerprint. The fingerprints the pirates are able to forge form the so-called
feasible set, defined as

F (T ) := {(v1, . . . , vn) ∈Qn | ∀i,1≤ i ≤ n,∃(a1, . . . ,an) ∈ T,ai = vi},

whereT is the set of fingerprints held by the pirates,Q is the alphabet, andn is
the length of a fingerprint.

If the set (code) of valid fingerprints still makes it possible to trace at least
one guilty pirate out of a coalition of sizet or less, we say that the code has
the t-identifiable parent property (t-IPP). If the pirates are able to forge the fin-
gerprint of an innocent user, we say that this user is framed. Codes which pre-
vent framing are called frameproof codes, and this concept coïncides with (t,1)-
separation. Other kinds of separating codes have also been used to construct IPP
codes [BCE+01, BBK01a, BBK01b]. In [Sch03] it was proved that good (2,2)-
separating codes are also 2-IPP.

The design of self-checking asynchronous networks has been a challenging
problem. Friedmann et al. [FGU69] have shown that the unicode single-transition-
time asynchronous state assignment correspond to (2,2)- and (2,1)-separating
systems. The coding problem for automata states also motivated research on
(3,3)-SS [Ung69].

Separating codes have also been studied in a set theoretic framework, e.g.
[KS88], and Körner [Kör95] gives a series of problems equivalent to (2,1)-separating
codes.

The outlay of the report is as follows. Chapter 2 gives the background and
basic preliminaries for the study. Chapters 3-6 survey the available techniques for
bounding the asymptotic rate of separating codes. We make some generalisations
and improvements on former results, but in essence this techniques are known, or
even well-known. Tables of best known bounds in the binary case are presented
in Chapters 7 and 8.





Chapter 2

Preliminaries

There are a few properties which may be covered by our general definition of
separating systems. The most well-known of these is probablyz-hashing families
[BW98], but there is also a substantial literature on (t,u)-separating systems. A
couple of years ago, (a,b)-partial hashing was introduced [BCE+01]. When we
define (t1, . . . , tz)-separating systems, we cover all of this: forz = 2 we have the
(t,u)-separation known from [FGU69]; whenti = 1 for eachi, we havez-hashing;
and whenz = a+1, tz = b−a, andti = 1 for i < z, we have (a,b)-partial hashing.

First let us agree on some standard notation. LetQ be an additive group (often
a field) called the alphabet, and denote byq its number of elements. LetV be the
set ofn-tuples overQ. An (n,M)q codeΓ is anM-subsetΓ ⊆V. If Q is a field
of q elements andC is ak-dimensional subspaceC 5V, then we say thatC is a
[n,k]q (linear) code. We will refer to the elements ofV as words.

Definition 1
A sequence(T1, . . . ,Tz) of pairwise disjoint sets of words is called a(t1, . . . , tz)-
configuration if#Tj = tj for all j. Such a configuration is separated if there is a
positioni, such that for alll 6= l′ every word ofTl is different from every word of
Tl′ on positioni.

A code is(t1, . . . , tz)-separating if every(t1, . . . , tz)-configuration is separated.
A t-separating code is also called at-SS (separating system).

In earlier works on watermarking, (t, t)-separating codes have been calledt-
PIC (partially identifying codes) [CE00b] ort-SFP (secure frameproof) [SW98,
SvTW00, SSW00]. The current terminology appears to be older though [Sag94].
Different special cases have also appeared in literature; thet-frameproof codes
from [SSW00] are just (t,1)-separating codes.

In the literature, the binary alphabet is dominant. An extensive study of (2,1)-
SS is found in [Kör95]. Apparently, the notions of non-binary (2,1)- and (2,2)-SS





CHAPTER 2. PRELIMINARIES

were introduced in [Sag82], but the concept had been studied in [PS72, Sag73,
Sag75] under different names.

2.1 Basic definitions

For any wordc= (c1, . . . , cn) ∈V we define the support to be

χ(c) := {i | ci 6= 0}.

For any subsetS ⊆V, the support is

χ(S) :=
⋃

c∈S
χ(c).

We define the weight of subsets and codewords to be the size of their support, and
denote itw(c) := #χ(c) or w(S) := #χ(S).

Let C be a linear code. Ther-th minimum support weightdr of C is the least
weight of anr-dimensional subcode ofC. The r-th maximum support weight
mr is the largest weight of anr-dimensional subcode ofC. Both these numbers
were first studied in [HKM77], and the minimum support weight has received
quite some attention following [Wei91], where it was called ther-th generalised
Hamming weight.

It is clear thatd1 is the minimum distance of the code, and likewisem1 is the
maximum distance of the code; so these two numbers are defined also for non-
linear codes. Several general definitions ofdr exist for non-linear codes, but we
will not need any of them here.

We write t = (t1, . . . , tz). Given at-configuration (T1, . . . ,Tz), we define the
separating setΘ(T1, . . . ,Tz) to be the set of coordinate positions where (T1, . . . ,Tz)
is separated. Letθ(T1, . . . ,Tz) := #Θ(T1, . . . ,Tz) be the separating weight. Clearly
θ(T1, . . . ,Tz) ≥ 1 is equivalent with (T1, . . . ,Tz) being separated. The minimumt-
separating weightθt (C) is the least separating weight of anyt-configuration ofC.
The minimum separating weights have previously been studied by Sagalovich [Sag94].
Clearlyθ1,1(C) = d1(C).

By an automorphism onV, we shall understand any composition of permu-
tations of coordinate positions and alphabet permutations in individual positions.
These are exactly the maps which define equivalence classes of non-linear codes
in coding theory.

Remark 2.1
If π : V → V is an automorphism, thenθ(T1, . . . ,Tz)) = θ(π(T1), . . . ,π(Tz)) for
any t-configuration(T1, . . . ,Tz). It follows thatθt is invariant over the ensemble
of equivalent codes.
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2.2. BASIC RESULTS

2.2 Basic results

Define

P (t1, . . . , tz) :=
z−1
∑

i=1

z
∑

j=i+1

titj.

Note that iftj = 1 for all j, then

P (t1, . . . , tz) =
(

z

2

)

,

and ifz= 2, thenP (t1, t2) = t1t2. The following proposition generalises the results
on separating codes and perfect hashing families from [SWZ00, Alo86].

Proposition 1
Any (n,M,d)q codeΓ has

θt ≥ n−P (t)(n−d).

Corollary 1
An (n,M,d)q codeΓ is t-separating if

d

n
> 1−

1
P (t)

.

Proof: Consider anyt-configuration (T1, . . . ,Tz) from Γ, and define the sum

Σ :=
z−1
∑

i=1

z
∑

j=i+1

∑

(x,y)∈Ti×Tj

d(x,y).

This is the sum ofP (t1, . . . , tz) distances in the code, so

Σ ≥ P (t1, . . . , tz)d. (2.1)

Each coordinate can contribute at mostP (t1, . . . , tz) to the sumΣ, but if any co-
ordinate does contribute that much, then the configuration is separated on this
coordinate. Hence we get that

Σ ≤ n(P (t)−1)+θt . (2.2)

The proposition follows by combining the upper and lower bounds (2.1) and (2.2),
and simplifying. �

It must be noted that, to get infinite families of separating codes with good
rate, the alphabet sizeq grows extremely rapidly in thetj-s, due to the Plotkin
bound. On the other hand, for sufficiently large alphabets, good separating codes
are constructible from algebraic geometry. We will use the following lemma by
Tsfasman [Tsf91] extensively throughout the report.





CHAPTER 2. PRELIMINARIES

Theorem 1 (The Tsfasman Codes)
For anyα > 0 there are constructible, infinite families of codesA(N) with param-
eters[N,NR,Nδ]q for N ≥N0(α) and

R+ δ ≥ 1− (
√
q−1)−1−α.

Infinite families of separating codes over small alphabets can be built by con-
catenation. Though this construction is well-known in various special cases from
the literature [Alo86], we have not found as general a statement as the one we give
below. The outer codes for concatenation will very often be Tsfasman codes.

Definition 2 (Concatenation)
LetC1 be a(n1,Q)q and letC2 be an(n2,M)Q code. Then the concatenated code
C1◦C2 is the(n1n2,M)q code obtained by taking the words ofC2 and mapping
every symbol on a word fromC1.

Proposition 2
Let Γ1 be a(n1,M)M ′ code with minimumt-separating weightθ(1)

t , and letΓ2

be a (n2,M
′)q code with separating weightθ(1)

t . Then the concatenated code

Γ := Γ2◦Γ1 has minimum separating weightθt = θ
(1)
t ·θ(2)

t .

Proof: Consider at-configuration (T1, . . . ,Tz) in Γ. Then there is a correspond-
ing configuration inΓ1, (T ′′

1 , . . . ,T
′′
z ) which is separated on a setI of at leastθ(1)

t
positions by assumption. Considering only the positions ofΓ corresponding to a
particular positioni ∈ I in Γ2, we get at′-configuration (T ′

1, . . . ,T
′
z) in Γ1 where

1≤ t′j ≤ tj for all j. Clearly, (T ′
1, . . . ,T

′
z) must be separated on at leastθ

(2)
t posi-

tions, and consequentlyθ(T1, . . . ,Tz) ≥ θ
(1)
t θ

(2)
t , and the proposition follows. �

Note thatΓ will usually not satisfy the requirements of Proposition 1. We will
give a thorough example of the concatenation technique in Section 2.3.

It is easy to verify thatq ≥ z for any t-separating code; the alphabet must
have a distinct symbol for each of thez subsets to be separated. The following
proposition strengthens this result.

Proposition 3
If C is a linear,(t1, . . . , tz)-separating code andz ≥ 3, then

∑z
j=1 tj ≤ q.

Proof: First we prove thatt1+ t2 < q, for if

T1∪T2 ⊇ {αc | α ∈ GF(q)},

then no third setT3 will be separated fromT1 andT2.
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2.2. BASIC RESULTS

Let α0,α1, . . . ,αq−1 be all the field elements, whereα0 = 0 andα1 = 1. Let a
andb be two independent codewords. Let

T1 := {α0a, . . . ,αt1−1a},
T2 := {αt1a, . . . ,αt1+t2−1a},

and letT3, . . . ,Tz be any sequence of pairwise disjoint sets such that

T :=
z
⋃

j=3

Tj = {a+α1b, . . . ,a+αt′b},

wheret′ = t3+ . . .+ tz. Clearly,T1 andT2 are only separated onχ(a). AlsoT and
T1 are only separated onχ(b). On any coordinatei ∈ χ(a)∩χ(b), t1+ t2 different
values occur inT1∪T2 andt′ different values occur inT . Hence the configuration
can only be separated if

t′+ t1+ t2 = t1+ . . .+ tz ≤ q,

as required. �

Corollary 2
If C is a linearq-ary, (t,u)-partially hashing code witht ≥ 2, thenu ≤ q.

These bounds are tight, sinceq-hashing codes can be constructed for anyq.

Proposition 4
Let a andb be two linearly independent codewords, and writeT = {a,b+αa | α ∈
GF(q)}. Then(0,T ) is a (q+1,1)-configuration which is not separated.

Proof: We shall prove that in every positioni, at least one codeword inT has a
0. If bi = 0, this holds, so assumebi 6= 0. Thenb+ (−a−1

i )bia has 0 in positioni,
as required. �

Corollary 3
If C is q-ary, linear(t, t′)-separating, thenmax{t, t′} ≤ q.

This bound is tight in the binary case, since (2,2)-separating, binary, linear codes
are known to exist (e.g. [Sag94]).

Theorem 2
If C is a non-binary, linear(t, t′)-separating, thent+ t′ ≤ q+1.
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CHAPTER 2. PRELIMINARIES

Proof: We have already proved thatt, t′ ≤ q. It only remains to prove that we can
construct a non-separated (t,q+2− t)-configuration for allt such that 2≤ t ≤ q.
Let α0,α1, . . . ,αq−1 be all the fields elements, whereα0 = 0 andα1 = 1. Leta and
b be two independent codewords. A non-separated (t,q+2− t)-configuration is
given by

({α0a, . . . ,αt−1a},{αta,a+α1b, . . . ,a+αq+1−tb}).

First note thatαta matches0 on every position not inχ(a), anda+b matcha on
every position not inχ(b). In every position inχ(a)∩χ(b), we gett different field
values in the first set, andq+1− t different field values from thea+ αib. Since
there are onlyq elements in the field, they cannot be separated. �

2.3 The tetracode and compositions thereof

The ternary constructions will make use of three ingredient codes, and apply twice
the concatenation method. We will obtain an asymptotic code which is (2,2)-,
(3,1)-, and (1,1,1)-separating. Recall that no stronger separating properties is
possible for a ternary code, by Theorem 2 and Corollary 3.

The first seed is the remarkable [4,2,3]3 tetracodeT, defined by the generator
matrix

G =
[

1 1 1 0
0 1 2 1

]

.

This code is self-dual and MDS (on Singleton’s boundd = n−k+1). It is both
an extended perfect Hamming code and a simplex (all codewords are at dis-
tance 3 apart). Thus it follows thatT is 3-hashing and (3,1)-separating from
Proposition 1. Furthermore, it is (2,2)-separating by Theorem 19. The tetracode
was proved 3-hashing in [KM88], and it was proved to have the IPP property in
[HvLLT98].

Let R1 be the [9,3,7]32 Reed-Solomon code, which is both (2,2)- and (1,3)-
separating, and 3-hashing by Proposition 1. The concatenated codeT ◦R1 has
parameters [36,6]3, and by Proposition 2, it is (2,2)- and (1,3)-separating, and
3-hashing. With 36 codewords, this code can be concatenated withA(N) over
GF(36) which gives a reasonable rate.

The concatenated codeT◦R1◦A(N) gives an infinite family of linear, ternary
(3,1)- and (2,2)-separating and 3-hashing codes with rateR′/6≈ 0.0352.

If we only want (3,1)-separating and 3-hashing codes, we can obtain a better
rate by using the Reed-Solomon codeR2 with parameters [10,4,7]32, which re-
sults in the concatenated codeT◦R2 with parameters [40,8]3. Then we take the
infinite family A(N) of codes with parameters [N,K,D = d2N/3e+1]38 of rate
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2.3. THE TETRACODE AND COMPOSITIONS THEREOF

1/3− (34−1)−1, and the concatenated codeT ◦R2 ◦A(N) is an infinite family
of linear ternary (3,1)-separating and 3-hashing codes with rate approximately
77/1200≈ 0.0642.

Example 2.1 We sketch a construction withq = 4 as well. As in the previous
example, we concatenate three codes to build the infinite family. Each code has
d/n > 3/4 and thus is(2,2)-separating by Proposition 1. The first two are doubly
extended Reed-Solomon codes. We take successively:

1. C1[5,2,4]4;

2. C2[17,5,13]42, gettingC1◦C2[85,10]4;

3. and finally,C(N)[N,K,D = d3N/4e+1]410 with rate≈ 1/4− (45−1)−1 ≈
1/4.

The final outcome is an infinite constructive family of linear quaternary(2,2)-
separating codes with rate approximately1/34≈ 0.029.
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Chapter 3

On (t,1)-separating codes

In this chapter we prove an upper bound on (t,1)-SS. Interestingly enough, this
bound is independent of the alphabet sizeq.

A (t, τ)-cover free code is a code with (t,1)-separating weight at least equal
to τ. Such codes were studied in [GSW00] and [KRS99] motivated by broadcast
encryption. The results in this chapter were also presented in [CS03a].

Partition{1,2, ..n} into t almost equal partsP1, . . . ,Pt of size approximately
n/t. Say a codewordc is isolatedonPi if no other codeword projects onto an/t-
tuple onPi located at distance less than (n/t)τ from c. Denote byUi the subset of
codewords isolated onPi.

Lemma 1
If C is (t, τ)-cover free, then every codewordc of C is isolated on at least onePi.

Proof: Suppose for a contradiction that there is a codewordc0 which is not
isolated. Letci be a codeword which is at distance less than (n/t)τ when projected
ontoPi, for i = 1, . . . , t. Now c0 is separated from{c1, . . . ,ct} on less than (n/t)τ
coordinates per block, or at mostnτ− t coordinate positions total. This contradicts
the assumption on the separating weightτ. �

If we let τ tend to zero, we get an upper bound on (t,1)-SS, which was found
independently in [CS03b] and [Bla03b]. The proofs are essentially the same as
the one presented here.

Theorem 3
If C is (t, τ)-cover free, then|C| ≤ tqd(1−τ)n/te.

For constantt, this asymptotically givesR ≤ (1− τ)/t whenn increases. This
rate is obtained by the Tsfasman codes (Theorem 1) by Proposition 1, whenδ >
t−1(1− τ). The lower bound for arbitraryq has been studied in more detail in
[Xin02].
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Theorem 4
For fixedt and large enoughq, the largest possible rate of aq-ary family of (t, τ)-
cover free codes satisfiesR = t−1(1− τ)(1+ o(1)).
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Chapter 4

Upper bounds by projection

In this chapter we shall give a general presentation of the well-known projection
arguments for upper bounds. The technique have been used for decades, but the
results have continuously been refined in various ways, see e.g. [Sag94]. The
latest refinements for binary (t, t)-SS appeared in [CS03b].

4.1 Stronger properties in the binary case

Separating codes are related to two stronger concepts. Completely separating
codes ((t, t′)-CSS) are used in automata theory and fault-tolerant systems along-
side the separating codes. Superimposed codes ((t, t′)-SI) where introduced in
[KS64], and have been studied in several papers, e.g. [DR83, DVMT02].

We will consider the binary case only. Consider anyt+ t′ codewords and view
them as rows of a matrix. If the code is separating, there must be at least one
so-called regular column, which is eitherx0 = (0. . .01. . .1) with t zeroes andt′

ones, orx1 = (1. . .10. . .0) with t ones andt′ zeroes.
If the code is (t, t′)-superimposed, we demand at least one column of type

x0, and if the code is (t, t′)-completely separating, we demand bothx1 andx0.
Thus separating codes is clearly the weakest concept, while completely separating
systems is the strongest. Ift = t′, superimposed codes and completely separating
codes are equivalent, since the property has to hold for any ordering of the words.

Let RCSS(t, t′), RSI(t, t′), andRSS(t, t′) be the best possible asymptotic rates
of (t, t′)-CSS, (t, t′)-SI, and (t, t′)-SS, respectively. Clearly we have

RSS(t, t′) ≥ RSI(t, t′) ≥ RCSS(t, t′) ≥
1
2
RSS(t, t′).

We denote byR̄x(t, t′) any upper bound onRx(t, t′). Let R̄(δ) be any upper bound
on the asymptotic rate of error-correcting codes with normalised minimum dis-
tanceδ.
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4.2 Improved upper bounds on(t, t′)-SS

Proposition 5
Any binary(t,u)-separating(θ0,0,M,θ1,1) codeΓ with separating weightsθa,b, for
1≤ a ≤ t and1≤ b ≤ u, gives rise to, for any positivev < min{t,u}, a completely
(t−v,u−v)-separating(θv,v,M−2v,2θv+1,v+1) codeΓ′ with complete-separating
weightθ′a,b = θa+v,u+v for 1≤ a ≤ t− v and1≤ b ≤ u− v.

Proof: Consider twov-tuplesV andV ′ of words fromΓ, such that they have
separating weightθv,v. Assume by translation that (V,V ′) hasθv,v columns of the
form (0. . .01. . .1). LetΓ′ be the code obtained fromΓ by deleting every column
where (V,V ′) is not separated and the 2v words fromV andV ′. ClearlyΓ′ has
the length and dimension claimed by the proposition. It remains to prove the
separating weights.

Let (T,U ) be a (t′, u′)-configuration fromΓ wheret′ ≤ t− v andu′ ≤ u− v).
Then both (V ∪T,V ′∪U ) and (V ′∪T,V ∪U ) must have separating weight at least
θt′+v,u′+v, which implies that (T,U ) is completely separated with weight at least
θt′+v,u′+v. This holds even when restricting only to the positions where (V,V ′) is
separated. �

The following proposition is proved in the same way.

Proposition 6
Any completely(t,u)-separating(n,M,2θ1,1) code with completely separating
weightsθa,b, for 1 ≤ a ≤ t and 1 ≤ b ≤ u, gives rise to, for any positivev <
min{t,u}, a completely(t−v,u−v)-separating(θv,v,M−2v,2θv+1,v+1) code with
complete-separating weightθ′a,b = θa+v,u+v for 1≤ a ≤ t− v and1≤ b ≤ u− v.

Theorem 5
We have fort,u ≥ 2 that

RCSS(t,u) ≤ R̄
( 2RCSS(t,u)

R̄CSS(t−1, u−1)

)

,

RSS(t,u) ≤ R̄
( RSS(t,u)

R̄CSS(t−1, u−1)

)

.

Proof: Let C be a (t,u)-CSS with rateR = RCSS(t,u), and letC ′ be the (t−
1, u−1)-CSS which exists by Proposition 6. Denote byR′ the rate ofC ′. We have
that

δ = 2
θ1,1

θ0,0
= 2

logM
θ0,0

θ1,1

logM
= 2R/R′.

Now, obviouslyR ≤ R̄(δ), which is decreasing inδt, and this gives the result.
The bound onRSS is similar, except that the minimum distance ofC is d = θ1,1

instead of 2θ1,1. �
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(t, t′) CSS SIC SS

(2,1) — 0.32192 0.51

(3,1) — 0.19932 0.33331

(3,2) 0.06627 0.074493 0.1202
(4,2) 0.04301 0.045523 0.07994
(4,3) 0.01533 0.018283 0.02951

(t, t) CSS SS

(1,1) 1.0000 1.0000
(2,2) 0.16102 0.2835
(3,3) 0.03534 0.06627
(4,4) 0.008368 0.01630
(5,5) 0.002042 0.004037

1 Theorem 3
2 [DVMT02]
3 [KLO03]

Table 4.1: Upper bounds on completely separating codes (CSS), superimposed
codes (SIC), and separating codes (SS) over a binary alphabet.

This theorem provides a recursive bound on separating codes. The general
idea is not new, at least the derived bound on (2,2)-SS has been known for ages,
see [Sag94]. Even so, the results we obtain here for (t, t)-CSS are stronger than
those recently presented in [DVMT02] (except fort = 2).

We use the McEliece-Rodemich-Rumsey-Welch bound forR̄(δ), as given in
the following theorem. See [Aal90, Lev98] for the non-binary form and [MRRW77,
MS77] for the original (binary) version.

Theorem 6 (McEliece-Rodemich-Rumsey-Welch bound)
For any(n,M,d) code, we have

R(δ) ≤Hq(((q−1)− (q−2)δ−2
√

(q−1)δ(1− δ))/q),

where
Hq(x) = −(1−x) logq(1−x)−x logq x+x logq(q−1).

In Table 4.1, we summarise the rate we get for smallt andt′, andq = 2. Most
of the rates are obtained by using the theorems of this chapter recursively. The first
bounds in the iterations are copied from other works. Observe that we improve
the bounds also on (t, t)-superimposed codes fort ≥ 3.

Example 4.1 LetC1 be an asymptotic class of(θ0,2k,θ1) (3,3)-SS. Then there is
an asymptotic classC2 of (θ1,2k,θ2) (2,2)-CSS. We have thatR2 = k/θ1 ≤ 0.161,
and

R1 = k/θ0 = R2δ1 ≤ 0.161δ1,

which is equivalent to
δ1 ≥ R1/0.161.
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We can use any upper bound̄R(δ) onR1, and get

R1 ≤ R̄(δ1) ≤ R̄(R1/0.161).

Using the Theorem 6, we getR1 ≤ 0.0663.

Problem 4.1 Make a bound on the rate for givenτt,t′ .

Problem 4.2 Retrieve a proof of the bound on(3,3)-SS,R≤0.0658from [CGL01].

Problem 4.3 Is it possible to get rid of the recursion and find a simple closed
form expression for the upper bound?

4.3 Ternary bounds

In the non-binary case, complete separation is not clearly defined. Whenq > 3,
we are not able to prove the recursive bound stronger than

RSS
q (t,u) ≤ R̄

( RSS
q (t,u)

R̄SS
q (t−1, u−1)

)

,

which is considerably weaker than the binary result. The reason for this is found
in the proof of Propositions 5 and 6. Because there are four alphabet symbols (or
more), it is possible to have one column which separates both (V ∪T,V ′∪U ) and
(V ′ ∪T,V ∪U ).

In the ternary case we are able to get a strong analogue of the binary results
by the definition of ternary pseudo-completely separating weight. Let (T,U ) be a
(t,u)-configuration. A columni is regular if it separates (T,U ). A regular column
i is of Type 0 ifxi 6= 1 for all x ∈ T andyi 6= 0 for all y ∈U . It is of Type 1 ifxi 6= 0
for all x ∈ T andyi 6= 1 for all y ∈ U . Note that one column can be both of Type 1
and of Type 2 if and only ifq > 3.

The pseudo-completely separating weight of a ternary codeC is the largest
numberθt,u such that any (t,u)-configuration has at leastθt,u regular columns of
Type 0 and at leastθt,u regular columns of Type 1.

The following two lemmata can be proved using the proof of Proposition 5.

Lemma 2
Any ternary(t,u)-separating(θ0,0,M,θ1,1) codeΓ with separating weightsθa,b,
for 1≤ a ≤ t and1≤ b ≤ u, gives rise to, for any positivev < min{t,u}, a pseudo-
completely(t−v,u−v)-separating(θv,v,M −2v,2θv+1,v+1) codeΓ′ with pseudo-
completely separating weightθ′a,b = θa+v,u+v.





4.4. BOUNDS ON LINEAR SEPARATING CODES

(t, t) PCSS SS

(1,1) 1 1
(2,2) 0.2197 0.3237
(3,3) 0.06204 0.1138
(4,4) 0.01913 0.03675
(5,5) 0.006120 0.01202

(t, t′) PCSS SS

(3,2) 0.1268 0.2197
(4,3) 0.03751 0.07056
(5,4) 0.01180 0.02290
(4,2) 0.08978 0.1605
(5,3) 0.02713 0.05167
(5,2) 0.06966 0.1268

Table 4.2: Upper bounds on ternary separating codes, computed by using the
boundR ≤ 1/t for (t,1)-SS and -PCSS (Theorem 3) and recursive application of
Theorem 7.

Lemma 3
Any ternary pseudo-completely(t,u)-separating(θ0,0,M,2θ1,1) codeΓwith pseudo-
completely separating weightsθa,b, for 1≤ a ≤ t and1≤ b ≤ u, gives rise to, for
any positivev <min{t,u}, a pseudo-completely(t−v,u−v)-separating(θv,v,M−
2v,2θv+1,v+1) codeΓ′ with pseudo-completely separating weightθ′a,b = θa+v,u+v.

Analogously of Theorem 5, we get the following theorem. Table 4.2 follows
by combining Theorem 7 with the McEliece et al. bound.

Theorem 7
We have fort,u ≥ 2 that

RPCSS
3 (t,u) ≤ R̄

( 2RPCSS
3 (t,u)

R̄PCSS
3 (t−1, u−1)

)

,

RSS
3 (t,u) ≤ R̄

( RSS
3 (t,u)

R̄PCSS
3 (t−1, u−1)

)

.

4.4 Bounds on linear separating codes

LetRLSS
q (t,u) be the highest possible rate for an asymptotic family of linear,q-ary

(t,u)-separating code.

Proposition 7
Any linear separating[θ0,0,k,θ1,1] codeC with separating weightsθa,b, where
1≤ a ≤ t and1≤ b ≤ u, gives rise to a linear separating[θ0,1,k−1,θ1,2] codeC ′

with separating weightsθ′a,b = θa,b+1, where1≤ a ≤ t and1≤ b ≤ u−1.

Proof: Let c∈ C be a codeword of weightθ1,1. LetC ′ be the code obtained by
shorteningC on every position wherec is zero. It remains to prove thatθa,b(C ′) ≥
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t+u Rate

3 0.3537
4 0.1683
5 0.09050
6 0.05206

Table 4.3: Upper bounds on ternary linear separating codes, computed by recur-
sive application of Corollary 4.

θa,b+1(C) for all a andb. It is sufficient that any (a,b)-configuration (A,B) of C ′

with 0 ∈ A has separating weight at leastθa,b+1(C). Consider the corresponding
(a,b+1)-configuration (A,B′) = (A,B∪{c}) in C. Observe that (A,B′) can only
be separated wherec is non-zero, i.e. on position existing inC ′. Henceθ(A,B) =
θ(A,B′) ≥ θa,b+1(C) as required. �

Corollary 4
For anyt ≥ 1 andu ≥ 2, we have

RLSS
q (t,u) ≤ R̄

( RLSS
q (t,u)

R̄LSS
q (t,u−1)

)

.

Note that this bound depends only on the sumt+ u. We have computed nu-
merical values forq = 3 in Table 4.3. Applying the corollary forq = 2 gives us
the same bounds as the ones we get from intersecting codes in Chapter 5.
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Chapter 5

Almost linear separating codes

We have seen that a binary, linear code cannot be more than (2,2)-separating. On
the other hand, we know that (t,u)-separating codes can be constructed from (lin-
ear) (t+u−1)-wise intersecting codes by forming a non-linear subcode [CELS01].
In Section 5.2, we will present this technique, and correct some errors which un-
fortunately appeared in the original paper. In Section 5.1 we will present a new
statement on how far from linear a (t,u)-separating code must be.

5.1 Almost linear separating codes

Theorem 8
Let C be a binary(t,u)-SS containing the zero word, and letι be the size of the
smallest set of linearly dependent non-zero words. Then we have

ι > ῑ(t,u) :=











t+u, whent ≡ u ≡ 1 (mod 2),

t+u−1, whent 6≡ u (mod 2),

t+u−2, whent ≡ u ≡ 0 (mod 2).

Proof: The result is trivial fort,u ≤ 2. We prove the lemma by induction, so
assume it holds for any smallert or u. If u or t is even, the result follows by
induction becauseC must be (t,u−1)-separating and (t−1, u)-separating. It only
remains to prove it fort andu odd.

SinceC is (t− 2, u)- and (t,u− 2)-separating, anyt+ u− 2 codewords are
linearly independent by induction. Suppose there is a setT = {x1, . . . ,xι} of ι =
t+ u− 1 non-zero words adding to zero. Then (x1, . . . ,xt;xt+1, . . . ,xι,0) cannot
be separated, becauseT cannot have an odd number of ones in any position. If
ι = t+u, the same argument holds for (x1, . . . ,xt;xt+1, . . . ,xι). �
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5.2 Intersecting codes

The first relationship between intersecting codes and separating codes appeared
in [BR80]. Any linear binary (2,1)-SS is an intersecting code and vice versa. In
this chapter we exploret-wise intersecting codes fort ≥ 3.

Definition 3
A linear codeC of dimensionk ≥ t is said to bet-wise intersecting if anyt linearly
independent codewords have intersecting supports. Ift > k, we say thatC is t-wise
intersecting if and only if it isk-wise intersecting.

It is easy to verify that anyt-wise intersecting code is also (t−1)-wise intersecting.

Proposition 8
For a linear, binary code,3-wise intersection is equivalent to(2,2)-separation.

The fact that linear, (2,2)-separating codes must be 3-wise intersecting holds
not only for binary codes, and it is proved in Proposition 9 below. Unfortunately,
this is the only result we have found in the non-binary case.

The fact thatt-wise intersecting, binary codes gives rise to separating codes
can be generalised. The statement of the proposition, will follow from the special
caset = 3, j = 2 of Theorem 9 below.

Remark 5.1
If we have a linear,q-ary (2,1)-SSC, then any pair of vectors(x,y) is separated
from 0. Consequentlyx andy intersect in some position andC is 2-wise inter-
secting. This was observed forq = 2 in [BR80].

Proposition 9
Every linear(2,2)-separating code is 3-wise intersecting.

Proof: If k = 2, three-wise intersection is equivalent to 2-wise intersection
according to our definition. Any (2,2)-separating code is (2,1)-separating and
hence 2-wise intersecting by Remark 5.1.

SupposeC is (2,2)-separating, and consider three independent codewords
a,b,c. We shall prove that these three words have intersecting supports. Con-
sider the (2,2)-configuration (0,c+a;a,b). SinceC is (2,2)-separating, there is
a positioni wherea is α 6= 0 andb is β 6= 0, andc+ a is γ 6∈ {α,β}. Now c is
γ−α 6= 0 on positioni. �

Due to this proposition, we can use many bounds on separating codes as
bounds on intersecting codes. For instance, by Theorem 19, every code with
4d > 3m is 3-wise intersecting.
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Theorem 9
Let i, j ≥ 1 be integers such thatt := i+ j−1≥ 2. Consider at-wise intersecting,
binary, linear codeC, and a non-linear subcodeΓ ⊆ C. Let ῑ(i, j) be defined as
in Theorem 8. The codeΓ is (i, j)-separating if and only if anȳι(i, j) non-zero
codewords are linearly independent.

Proof: If Γ is (i, j)-separating, then any ¯ι(i, j) codewords are independent by
Theorem 8. The opposite implication is a bit tedious to prove. We start by proving
that anyt+1 codewords being linearly independent is sufficient forΓ to be (i, j)-
separating. This holds as the theorem states irrespectively of the parities ofi and
j. Afterward we will strengthen the result in the cases wherei andj are not both
odd.

Choose any (two-part) sequenceY ′ of t+1 codewords fromΓ,

Y ′ := (a′1, . . . ,a
′
j;c

′
1, . . . ,c

′
t+1−j).

By Remark 2.1,Y ′ is (j, t+ 1− j)-separated if and only ifY := Y ′ − c′t+1−j is.
Hence it suffices to show that

Y = (a1, . . . ,aj;c1, . . . ,ct−j,0)

is (j, t+1− j)-separated.
Since thet+ 1 codewords ofY ′ are linearly independent, so are thet first

codewords ofY . Now, consider

X := {a1+c1, . . . ,a1+ct−j;a1, . . . ,aj},

which is a set of linearly independent codewords fromC, and hence all non-zero
on some coordinatei. Sincea1+ cl is non-zero on coordinatei, cl must be zero
for all l. HenceY , and consequentlyY ′, is separated on coordinatei.

This completes the first step. In the case wherei 6≡ j (mod 2), we get that
t is even, and consequently thet first codewords ofY are linearly independent
whenever anyt words ofY ′ are. Therefore it is sufficient that anyt codewords of
Γ be linearly independent.

Finally, we consider the case wherei andj are both even. We shall again show
thatY ′ is separated. If all thet+1 words ofY ′ are linearly independent, then we
are done by the first part of the proof. By assumption, we know that anyt− 1
words are linearly independent. This gives two cases to consider:

1. c′t+1−j is the sum of thet first words, which are linearly independent.

2. c′t−j is the sum of thet−1 first words andc′t+1−j is independent of the others.
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Let Y ′, Y , andX be defined as before. Consider the first case first. Anyt− 1
non-zero words ofY are linearly independent, while all thet non-zero words sum
to 0. Hence, the only linear independence found between the elements ofX is that

0= b1+ . . .+bt−j +a2+ . . .+aj, (5.1)

wherebi = ci+a1. It follows that thet−1 first words ofX intersect, sinceC is
t-wise intersecting. Thus there is a positionl, whereai is 1 for i = 1, . . . , j−1 and
ci′ is zero fori′ = 1, . . . , t− j. Furthermore,aj is one in positionl by (5.1). Hence
Y is separated.

In the second case, we get that thet non-zero words ofY are linearly indepen-
dent. Thus the result follows like the first part of the proof. �

It is perhaps not obvious how these propositions may be used to construct
non-linear separating codes with a reasonable rate. The remainder of the section
is devoted to explaining this.

Lemma 4
Given an[n,rm] linear, binary codeC, we can extract a non-linear subcodeΓ of
size2r such that any2m non-zero codewords are linearly independent.

Proof: Let C ′ be the [2r − 1,2r − 1− rm,2m+ 1] BCH code. The columns
of the parity check matrix ofC ′ make a setΓ′ of 2r − 1 vectors fromGF(2)rm,
such that no 2m of them are linearly independent. Now there is an isomorphism
φ : GF(2)rm → C, so letΓ = φ(Γ′)∪{0}. �

Lemma 5
Given an[n,rm+1] linear, binary codeC, we can extract a non-linear subcodeΓ
of size2r+1 such that any2m+1 codewords are linearly independent.

Proof: LetC ′ be the [2r,2r−1− rm,2m+2] extended BCH code. The columns
of the parity check matrix ofC ′ make a setΓ′ of 2r vectors fromGF(2)rm+1, such
that any 2m+1 of them are linearly independent. Now there is an isomorphism
φ : GF(2)rm+1 → C, so letΓ = φ(Γ′)∪{0}. �

Problem 5.1 Improve Lemmata 4 and 5.

Theorem 10
Given an[n,nR] t-wise intersecting binary (asymptotic) code, there is a construc-
tion of a non-linear(i, j)-SSΓ of rateR/bt′/2c, wherej = t+1− i, andt′ = t−1
if i andj are even andt′ = t+1 otherwise.

Proof: Setj := t+1− i, and let ¯ι(i, j) be as defined in Proposition 9. Observe
that bt′/2c = bῑ(i, j)/2c. By Lemma 4, we can construct an asymptotic codeΓ
with rateR/bῑ(i, j)/2c =R/bt′/2c where any ¯ι(i, j) codewords are linearly inde-
pendent. ThenΓ is (i, j)-separating by Proposition 9. �
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(t, t′) SS rate

(2,1) 0.2075
(3,1) 0.03211
(4,1) 0.01164
(5,1) 0.003054
(3,2) 0.01164

(t, t′) SS rate

(4,2) 0.004580
(5,2) 0.001262
(4,3) 0.001262
(5,3) 0.0004041
(5,4) 0.0001765

(t, t) SS rate

(1,1) 1
(2,2) 0.06422
(3,3) 0.003054
(4,4) 0.0005388
(5,5) 0.00006268

Table 5.1: Existence bounds on binary separating codes based on intersecting
codes (Theorem 11).

Problem 5.2 Is it possible to generate completely separating codes with good
rates by a similar technique?

5.3 Existence results

Using intersecting codes, we get the following existence bounds on separating
codes. The numeric values for smallt and u are shown in Table 5.1. Except
for (2,1)- and (2,2)-SS, they are unfortunately not very good, as we will see in
Chapter 6.

Theorem 11
For anyi and anyj, there exists asymptotically(i, j)-SS for any rate

R ≤
1− 1

t log(2t−1)

bt′/2c
,

wheret = i+ j−1 andt′ = t if i andj are both even andt′ = t+1 otherwise.

Proof: In [CZ94], it was shown that for sufficiently largen, and for any rate
R < 1− 1

t log(2t − 1), there aret-wise intersecting linear, binary [n,k] codes of
rateR. Applying this to Theorem 10, we get the result. �

5.4 Binary constructions

Several good (t,u)-separating codes may be constructed from intersecting codes
and columns from the parity check matrices of BCH codes. In Table 5.2, we use
a t-wise intersecting code from Proposition 10, and extract a non-linear subcode
where anȳt words a linearly independent, using Lemma 4. This is concatenated
with a Tsfasman code.
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Inters. code Inner code Outer code rate
t [n,k] t̄ (n,M) q rate

(2,2) 3 [27−2,14] 2 (126,214) 214 123/508 0.02690
(3,2) 4 [29−2,18] 4 (510,29) 192 1/9 0.001851
(3,3) 5 [211−2,22] 6 (2046,27) 112 1/90 0.00003757
(4,2) 5 [211−2,22] 4 (2046,211) 432 17/168 0.0005367
(4,3) 6 [213−2,26] 6 (213−2,28) 28 1/60 0.00001628
(4,3) 6 [215−2,30] 6 (215−2,210) 210 19/372 0.00001559
(4,4) 7 [215−2,30] 6 (215−2,210) 210 15/496 0.000009230
(5,5) 9 [225−2,50] 10 (225−2,210) 210 6/775 2.307·10−9

Table 5.2: Constructions using punctured dual BCH codes (Prop. 10) as inner
codes.

Note that for (4,3)-SS, two constructions are given. For the latter construc-
tion we use a 7-wise intersecting code in order to get a bigger alphabet for the
outer code. This loses rate for the inner code, but gains for the outer code, and
the two concatenated codes have roughly the same rate. For (5,5)-SS, the 9-wise
intersecting dual BCH code is so small that the Tsfasman code cannot be con-
structed as outer code with positive rate. Instead we use a 13-wise intersecting
code. Probably there are cleverer choices for inner codes than dual BCH codes.

Proposition 10[CZ94]
The punctured dual of the2-error-correcting BCH code with parameters[22t+1−
2,4t+2,22t−2t−1], is t-wise intersecting.

Explicit constructions of infinite families oft-wise intersecting codes with
non-zero rates where found om [CZ94]. These families give rise to separating
codes.

Lemma 6 [CZ94]
Let C1 be an[n1,k1,d1]q code withq = 2k2 and minimum distanced1 > n1(1−
21−t). LetC2 be an[n2,k2,d2] binaryt-wise intersecting code. Then the concate-
nationC1◦C2 is a binaryt-wise intersecting[n1n2,k1k2,d1d2] code.

Lemma 7 [CZ94]
There is a constructive infinite sequence oft-wise intersecting binary codes with
rate arbitrarily close to

Rt =
(

21−t−
1

22t+1−1

)

2t+1

22t−1
= 22−3t(t+ o(t)).
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Proof: By concatenating geometric [N,K,D]q codes from Theorem 1 satisfying
D>N (1−21−t) with q = 24t+2, and with a rate arbitrarily close to 21−t−1/(

√
q−

1), with the [22t+1−2,4t+2,22t−2t−1] code of Proposition 10, we obtain the
result. �

Proposition 11
There is a constructive infinite sequence of binary(j, t+1− j)-separating codes
of rate2−3(t−1)(1+ o(1)).

5.5 Upper bounds on intersecting codes

The upper bounds on intersecting codes are similar to those for separating codes
as presented in Chapter 4. We include them here for reference.

Theorem 12
A t-wise intersecting codeCt[n,k,d] gives rise by projection to a(t− 1)-wise
intersecting codeCt−1[d,k−1].

Proof: Let a ∈ C be a fixed element of minimum weightd. Denote byCa the
[n,k−1] supplementary subspace of{0,a} in C. Consider any (t−1) independent
codewords{b1, . . . , bt−1} in Ca. Then{a,b1, . . . , bt−1} is full rank, hence theset
codewords ofC intersect (on the support ofa). ThusC/a, the projection ofCa on
the support ofa is a (t−1)-wise intersecting [d,k−1] code. �

To get an upper bound on the dimension of such codes in the binary case, we
use recursively the best known upper bound on error correcting codes, namely the
McEliece et al. bound (see Theorem 6).

For t = 3, we get the following sequence of codes:

C3[n,k,d], C2[d,k−1,d′], C1[d′,k−2],

whereCi is i-wise intersecting, and has write rateRi.
FromC1, we have thatk−2≤ d′, which implies that

R2 = (k−1)/d ≤ (d′−1)/d ≤ d′/d.

By the McEliece bound, this impliesR2 ≤ 0.28. Finally we have

R1 =
k

n
≤

0.28d+1
n

≤ 0.108,

where the final bound follows by applying again the McEliece bound. The fol-
lowing corollary arise from the same technique and some other values fort.
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Corollary 5
The asymptotic rate of the largestt-wise intersecting binary code is at mostRt,
with R2 ≈ 0.28,R3 ≈ 0.108,R4 ≈ 0.046,R5 ≈ 0.021,R6 ≈ 0.0099.

Note that the McEliece bound is only valid asymptotically. In particular, the
[126,14] 3-wise intersecting code from Proposition 10 has rate 1/9> R3.
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Chapter 6

Existence bounds

Random coding is a standard technique for proving lower bounds on codes, for
separating codes as well as error-correcting codes. In this chapter, we spell out a
general framework of this technique, with a few variations.

6.1 Random coding bound

Let C be a random (n,M)-code (uniform distribution) and compute the expected
numberE of (t,u)-configurations (T,U ) which are not separated. WheneverE ≤
M/2 there is at least one codeC0 with at mostM/2 bad configurations, and if we
remove one word from each bad configuration, we get an (n,M/2) code with the
(t,u)-separating property.

The probability that a coordinatei separateU andT is independent of the
choice ofi by the randomness assumption; denote it byp(q, t,u). The probability
that a given (T,U ) is not separated is

Pq,t,u,n = (1−p(q, t,u))n, (6.1)

which implies

E =
(

M

t+u

)(

t+u

t

)

Pq.t,u,n. (6.2)

Writing M = qRn and lettingn go to infinity, we get that infinite sequences of
(t,u)-separating codes exist for all ratesR such that logq E < Rn, i.e. such that

(t+u)R+
1
n

logq Pq,t,u,n < R.

Making use of (6.1), we get the following proposition.
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Proposition 12
Infinite sequences of(t,u)-separating codes exist for all ratesR such that

R <
1

t+u−1
logq(1−p(q, t,u))−1.

We now apply the previous proposition to specific values ofq, t,u.

Theorem 13 (Binary lower bound)
There is an infinite family of binary(t,u)-SS with rate

R2(t,u) ≥ max
0≤℘≤1

1
t+u−1

log2

(

1−℘t · (1−℘)u−℘u · (1−℘)t
)−1

.

Proof: Let ℘ denote the probability of choosing a 1 in a given position in a
given word. We get that

p(2, t,u) =℘t · (1−℘)u+℘u · (1−℘)t.

Thus the theorem follows from Proposition 12. �

Problem 6.1 The analogous bound for superimposed codes is maximised for℘=
t/(t+ u). Find analytically the value of℘ which maximises the bound in Theo-
rem 13.

For (2,1)- and (2,2)-SS, this gives the well-known bounds [Sag94], which
also coïncide with the bounds from intersecting codes in Section 5.3. Numerical
values are given in Table 6.1.

Theorem 14 (Lower bound for large alphabets)
If q > tu, there exists an asymptotic,q-ary (t,u)-SS with rateR ≈ (t+u−1)−1(1−
logq tu).

Proof: We prove that such codes exist with uniform distribution in each coordi-
nate position. Sinceq > tu, we get that

p(q, t,u) ≥ ((q− t)/q)u ≥ 1− tu/q.

Now the theorem follows directly from Proposition 12. �
Lettingq tend to infinity, we also get the following corollary.

Corollary 6
For sufficiently largeq, there exists an asymptotic,q-ary (t,u)-SS with rateR ≈
(t+u−1)−1.
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℘ = 1/2 Theorem 13 Theorem 15
(t, t′) R R ℘ R q

(2,1) 0.2075 0.2075 0.5000000 0.1491 3
(3,1) 0.06422 0.06422 0.5000667 0.06928 5
(4,1) 0.02328 0.03138 0.7886795 0.03999 6
(5,1) 0.009161 0.02004 0.8322462 0.02595 8
(2,2) 0.06422 0.06422 0.5000000 0.04029 2
(3,2) 0.02328 0.02328 0.5000000 0.01584 2
(4,2) 0.009161 0.009160 0.5000000 0.007402 2
(5,2) 0.003787 0.003991 0.6666755 0.003828 2
(3,3) 0.009161 0.009161 0.5000000 0.005707 2
(4,3) 0.003787 0.003787 0.5000000 0.002456 2
(5,3) 0.001616 0.001616 0.5000000 0.001204 2
(4,4) 0.001616 0.001616 0.5000000 0.0009489 2
(5,4) 0.0007058 0.0007058 0.5000000 0.0004229 2
(5,5) 0.0003134 0.0003134 0.5000000 0.0001686 2

Table 6.1: Numerical values of the lower bounds given by Theorems 13 and 15,
with optimal choices forq and℘. We also give the lower bounds obtained by
random coding with symbol probability℘ = 0.5.
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The best known upper bound on (t,u)-SS for largeq is R ≤ 1/t, which is the
bound on (t,1)-SS. Observe that for moderateu, this upper bound is rather close
to the upper bound proved above.

Conjecture 1
For q sufficiently large, the best possible asymptotic rate for(t,u)-SS isR = (t+
u−1)−1.

This conjecture has been proved for (2,2)-SS (see [Sag94]) as well as for
(t,1)-SS as we saw in Chapter 3. Blackburn [Bla03a] also asked how the rate
behaves when the lengthn is fixed and the alphabet sizeq tends to infinity. For
(t,1)-SS this was answered in [Bla03b].

6.2 Random constant-weight coding bound

In this section we consider binary separating codes with constant weight. In some
cases, we can prove that such codes exist with rates above the bound from Theo-
rem 13. This technique was established for superimposed codes in [AZ88].

Let q ≥ 2 be an arbitrary integer. The constant-weight code is obtained by con-
catenating a random (w,M)q code with an (q,q,2)2 inner code, where all words
have weight 1. Clearly this gives an (n = qw,M)2 code where all the words have
weightw. The random outer code is built by choosing for each coordinate in each
codeword an element fromZq with uniform probability.

The bits corresponding to one position in the outer code will be referred to as
a block. Thus the code has lengthw blocks orn bits. The following argument is
analog to that of the previous section, working on blocks rather than on individual
coordinate positions.

Let T andU be disjoint sets of codewords of sizest andu respectively. The
probability thatT andU be separated on blocki is independent ofi, and is denoted
p(q, t,u). The probability thatT andU are not separated at all is

Pq,t,u,w = (1−p(q, t,u))w. (6.3)

The expected number of non-separated pairs isE as given in (6.2), and lettingn
go to infinity, we get that (t,u)-SS exist for all ratesR such that log2E <Rqw, i.e.
such that

R < −
1

t+u−1
1
q

log2(1−p(q, t,u)). (6.4)

It remains to calculatep(q, t,u).
Write the elements ofT andU as (x1, . . . ,xt;y1, . . . ,yu). Since a codeword has

one and only one 1-bit in each block, each block has at most one column of the
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form a1 = (1, . . . ,1;0, . . . ,0) and at most one of the forma2 = (0, . . . ,0;1, . . . ,1) in
block i.

The probability of having a column of forma1 in block i is

P1 =
(1
q

)t−1(

1−
1
q

)u

, (6.5)

because thex1 can be chosen freely, whilex2, . . . ,xt must have the same symbol
in block i of the outer code. All the vectorsy must have a different symbol in the
outer code. Likewise the probability of having a columna2 is

P2 =
(1
q

)u−1(

1−
1
q

)t

. (6.6)

The probability of having both column typesa1 anda2 is

P1,2 =
(

1−
1
q

)(1
q

)t+u−2
. (6.7)

By common inclusion-exclusion, we getp(q, t,u) = P1+P2−P1,2.

Theorem 15 (Binary lower constant-weight bound)
There an infinite family of binary(t,u)-SS with rate

R2(t,u) ≥ max
q=2,3,...

−1
q(t+u−1)

log2P
∗(q, t,u),

where

P ∗(q, t,u) =
[

1−
(1
q

)t−1(

1−
1
q

)u

−
(1
q

)u−1(

1−
1
q

)t

+
(

1−
1
q

)(1
q

)t+u−2]

.

Numerical values are given in Table 6.1. Note that constant weight codes
only improve the bounds for (t,1)-SS fort > 2. Furthermore, these bounds match
exactly the bounds on (t,1)-superimposed codes as given in [DVMT02].

Problem 6.2 For (t,1)-separating code, we have constructive lower bounds on
the rate for a given separating weightτ, and [DRR89] gives an existence bound
for (t,1)-superimposed codes with a given superimposed distance. Is it possible
to get stronger results for(t,1)-SS with a guaranteed separating weight by some
form of random coding?

Problem 6.3 Develop a lower bound on the rate of(t,u)-SS,t ≥ u ≥ 2, for a
guaranteed separating weightτ.





CHAPTER 6. EXISTENCE BOUNDS

Problem 6.4 For (t,1)-superimposed codes, better rates can be obtained by con-
sidering random constant-weight codes. That result appeared in [DRR89], and
numerical results were presented in [DMR00]. Give an analogous proof for sep-
arating codes.

Problem 6.5 In [DVMT02], the authors suggest that results from [DRR89] can
be extended for(t,u)-superimposed codes withu > 1. Can this be done for(t,u)-
SS as well?

6.3 Lower bound on superimposed codes

The bounds presented in this chapter are very similar to the ones given for su-
perimposed codes in [DVMT02, Section 3.5]. To show this analogue, we include
their result as well.

Theorem 16
For anyt ≥ u ≥ 1, the best asymptotic rate of a(t,u)-superimposed code is at least

R ≥
maxE1(t,u),E2(t,u)

t+u−1
, (6.8)

where

E1(t,u) = − log2

(

1−
ttuu

(t+u)t+u

)

, (6.9)

E2(t,u) = max
q=2,3,...

− log2

[

1−
(1
q

)t−1(

1−
1
q

)u]

. (6.10)

The bound given byE1 is correspond to Theorem 13, wherep(2, t,u) =℘t(1−
℘u

) contains one term instead of two, as only one column type gives the superim-
position property. The maximising value of℘ is t/(t+u).

The bound given byE2 correspond to Theorem 15, wherep(q, t,u) = P2, again
because only the column typea2 gives superimposition.
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Chapter 7

On (2,1)- and (2,2)-separation

The two simplest cases (2,1)- and (2,2)-separation are the ones most studied in
the literature. It has been found that Proposition 1 can be considerably strength-
ened in these cases. Except for the construction of an asymptotic (2,1)-SS with
rate 0.1845, all the results in this chapter have appeared elsewhere, and most of
them are even well-known classics. We include them for reference.

Theorem 17
If Γ is a code with minimum distanced1 and maximum distancem1, then2θ2,1 ≥
2d1−m1.

Proof: Let (c;a,b) be a (2,1)-configuration. Letting the three words be rows of
a matrix, we have essentially four types of columns: Type 0 where all the elements
are equal, Type I wherea or b differs from the two others, Type A wherec differs
from the two others, and Type B with three different elements. Letvi denote the
number of elements of Typei.

Consider the sum

Σ := w(c−a)+w(c−b) ≥ 2d.

Observe that
Σ = 2(vA + vB)+ vI .

Clearly we have
θ(c;a,b) = vA + vB,

and
w(a−b) = vB + vI ,

sovI ≤ m1. It follows that

2θ(c;a,b) ≥ 2d1−m1.
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�
For (2,2)-SS, the situation is not as clear as it is for (2,1)-SS. We get a similar

result for the binary case only (Theorem 18). In the non-binary case we get only
a sufficient condition forθ2,2 > 0 (Theorem 19).

Theorem 18
Let Γ be a binary code with minimum distanced1 and maximum distancem1.
Then4θ2,2 ≥ 4d1−2m1−n. If Γ is linear, then4θ2,2 ≥ 4d1−3m1.

This result is a classic one which dates at least from [Sag75]. A proof can
be found in [KS02], where they also show and use the fact that if the non-linear
codeΓ is contained in a linear codeC with maximum distancem′

1, then 4θ2,2 ≥
4d1−2m1−m′

1.
In the non-binary case, we have not managed to find a bound onθ2,2, but we

have a sufficient condition for (2,2)-separation. The following theorem appeared
in [CES02] and the proof will be given in the following section.

Theorem 19
If a code satisfies4d1 > 2m1+n, or if 4d1 > 3m1 and it is linear, then it is(2,2)-
separating.

7.1 On (2,2)-SS

Let Γ be an (n,M) code with minimum weightd1 and maximum weightm1.
Let ({c′,c},{a,b}) be a (2,2)-configuration which is not separated. We shall
deduce some conditions ond1 andm1 which are necessary if ({c′,c},{a,b}) not
be separated. By inverting this conditions, we get sufficient conditions forΓ being
separating.

By Remark 2.1, we can assume thatc′ = 0 andc= (1, . . . ,1,0, . . . ,0). We write

c= (c1, c2, . . . , cn),

a= (a1,a2, . . . ,an),

b = (b1, b2, . . . , bn).

Let r be such thatci = 1 for i ≤ r andci = 0 for i > r.
We consider the sum

Σ := d(0,a)+d(0,b)+d(c,a)+d(c,b)

= w(a)+w(b)+w(a−c)+w(b−c).

We have trivially that

4d1 ≤ Σ ≤ 4m1. (7.1)
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Consider now the matrix with rows0,c,a,b. Let xi be thei-th column in this
matrix. We have four main types of columns:

Type 0 : xi = (0,0,0,0),

Type I : xi ∈ {(0,0,0,α), (0,0,α,0)}, α 6= 0,

Type IIa : xi ∈ {(0,1,0,0), (0,1,1,1)},
Type IIb : xi ∈ {(0,1,0,1), (0,1,1,0)},
Type III : xi ∈ {(0,1,0,β), (0,1,β,0), (0,1,1,β), (0,1,β,1)}, β 6∈ {0,1}.

We have now that

Σ =
n
∑

i=1

σ(xi), (7.2)

whereσ(xi) is 0 for Type 0, 2 for Types I and II, and 3 for Type III. LetvX denote
the number of columns of Type X. Then we get

n = v0+ vI + vII + vIII , (7.3)

Σ = 2vI +2vII +3vIII . (7.4)

Proposition 13
If (0,c;a,b) is not (2,2)-separated, then

Σ = w(c)+w(a−b)+w(a+b−c).

Proof: We have trivially that

n−w(c) = v0+ vI . (7.5)

Define two words

y = (y1,y2, . . . ,yn) := a+b−c,

z= (z1, z2, . . . , zn) := a−b.

We have that

xi of Type 0 ⇒ yi = 0 ∧ zi = 0,

xi of Type I ⇒ yi = 1 ∧ zi = ±1,

xi of Type IIa ⇒ yi = ±1 ∧ zi = 0,

xi of Type IIb ⇒ yi = 0 ∧ zi = ±1,

xi of Type III ⇒ yi ∈ {β,β−1} = {α 6= 0}
∧zi ∈ {±(β−1),±β} = {α 6= 0}.
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This gives

n−w(a+b−c) = n−w(y) = v0+ vIIb ,

n−w(a−b) = n−w(z) = v0+ vIIa.

By adding together the two equations above as well as (7.5), we get

3n− (w(c)+w(a−b)+w(a+b−c)) = 3v0+ vIIa + vIIb + vI .

From (7.4) and (7.3) we get that

Σ = 3n− (3v0+ vIIa + vIIb + vI) = w(c)+w(a−b)+w(a+b−c), (7.6)

as required. �
We observe thatd(a,b) =w(a−b) andd(0,c) =w(c) are distances in the code;

hence they are bounded bym1. If C is linear,w(a+b−c) is also a distance in the
code, and thus bounded bym1. If C is non-linear, we still havew(a+b−c) ≤ n.
This gives Theorem 19.

Example 7.1 From the proposition we get that if(0,c;a,b) is a binary(2,2)-NSC
and4d1 = 3m1, then

w(c) = w(a−b) = w(a+b−c) = m1 = 4l,

w(a) = w(b) = w(a−c) = w(b−c) = d1 = 3l.

It turns out that the only possible(2,2)-NSC is the following, or replications
thereof:









0
c
a
b









=









000000
111100
110010
101001









.

Note that the linear code〈a,b,c〉 has alsod1 = 3 andm1 = 4.

7.2 Asymptotic results in binary

In Table 7.1, we present up to date bounds on (2,1)- and (2,2)-SS. The construc-
tion of non-linear (2,1)-SS is new, and thus is presented in the following section.
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Bound (2,1)-SS (2,2)-SS

Linear construction 0.1561 0.026224

Linear existence 0.20751 0.0642[Sag82]
Non-linear construction 0.18452 —
Non-linear existence 0.20753 —
Linear upper bound 0.281 0.108[CEL01]
Non-linear upper bound 0.53 0.2835 [Sag94]
1 Bounds from intersecting codes [CZ94]. These

bounds are also stated in [Sag94], with the possible
exception of the construction.

2 Kerdock-Tsfasman construction (this section).
3 [Kör95]. Theorem 3 provides an alternative proof

for the upper bound.
4 BCH/intersecting construction.

Table 7.1: Bounds on rates for infinite families of binary
(2,1)-SS and (2,2)-SS.

Property θt,u ≥ min.m n logM

(2,1)-SS 2m−2−3·2m/2−2 4 15 7
(2,2)-SS 2m−4−3·2m/2−2 8 255 15

Table 7.2: Kerdock codes and separating properties.
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7.2.1 Kerdock constructions

In [KS02], it was pointed out that shortened Kerdock codes have some nice sepa-
rating properties. Here we shall combine this discovery with the Tsfasman codes
to break some asymptotic records.

The Kerdock codes [Ker72], which are defined form≥ 4 andm even, are non-
linear, binary codes with parameters (2m,22m,2m−1−2m/2−1). The Kerdock codes
have only four non-zero weights,{2m−1− 2m/2−1,2m−1,2m−1+ 2m/2−1,2m}. By
shortening the Kerdock codes on one position, we get rid of the all-one word, and
obtain a class of three-weight codesK ′(m), where

n = 2m−1,

logM = 2m−1,

d1 = 2m−1−2m/2−1,

m1 = 2m−1+2m/2−1.

Krasnopev and Sagalovich showed that form ≥ 4, K ′(m) is a (2,1)-SS, and for
m ≥ 8, it is a (2,2)-SS. The fact thatK ′(m) for m ≥ 4 is (2,1)-separating follows
directly from Theorem 17. Proving any lower bound onθ2,2 requires the following
two lemmata.

Lemma 8
The one-shortened Kerdock codeK ′(m) is a subcode of the one-shortened, second-
order Reed-Muller code, which is linear.

This lemma follows from the fact thatK(m) is a subcode of the second-order
Reed-Muller code.

Lemma 9
The one-shortened, second-order Reed-Muller code has maximum distancem′

1 =
3·2m−2.

Considering the expression forΣ in (7.6), we see thatK ′(m) is (2,2)-separating.
The two first weights are distances inK ′(m) and bounded bym1. The third
weight is a weight in the one-shortened, second-order Reed-Muller code, and thus
bounded bym′

1. ThusK ′(m) is a (2,2)-SS whenever 4d > 2m1+m′
1, which holds

for m ≥ 8 as claimed. The details on these codes are shown in Table 7.2.
The (2,1)-SS obtained is a good one, and if we concatenate it with a Tsfasman

code of rate 1/2−1/10 and minimum distanceδ = 1/2 overGF(112), we get an
asymptotic class of (2,1)-SS with rate 0.1845 which is a new record.

Unfortunately, it does not appear to be possible to get any stronger separation
properties in this way, and the (2,2)-SS is not a record breaker.
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If we could use the AG codes from [Xin02] (see the following theorem) as
outer codes, we would get a (2,1)-SS with rate 0.2033, but Xing’s theorem is
non-constructive.

Theorem 20 (Xing)
Suppose thatq = p2r with p prime, and thats is an integer such that2≤ t≤√

q−1.
Then there is an asymptotic family of(t,1)-separating codes with rate

R =
1
t
−

1
√
q−1

+
1−2logq t

t(
√
q−1)

.
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Chapter 8

Asymptotic Results

In Table 8.1, we present the known upper and lower bounds for (t,u)-SS with
certaint andu. Most of the bounds have been presented in previous chapters.

The best constructions of (t,1)-SS originates from [CE00a], where finite frame-
proof codes designed by Stinson and Wei (see Lemma 10 below) are concatenated
with Tsfasman codes. We can improve this construction significantly by using a
larger,q-ary alphabet for the outer code, whereq is not a power of 2. These new
improved constructions are presented in Table 8.2.

Lemma 10[SW98]
For any prime powerv, there is a constructible, binary(bv/2c ,1)-SS with param-
eters(v2+1, v3+ v).

Problem 8.1 Very good constructions of superimposed codes are presented in
[DMR00]. Can those techniques be used to obtain better inner codes and thus
improve the present asymptotic constructions?
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Lower bounds Upper bounds
(t, t′) Constructive Non-constructive

(2,1) 0.18451 0.20751 0.51,6

(3,1) 0.044282 0.069289 0.33336

(4,1) 0.024532 0.039999 0.256

(5,1) 0.013752 0.025959 0.26

(2,2) 0.026904 0.064223,8 0.28357

(3,2) 0.0018514 0.023288 0.12027

(4,2) 0.00053674 0.0091618 0.079947

(3,3) 0.000037574 0.0091618 0.06585

(4,3) 0.000016284 0.0037878 0.029517

(4,4) 0.0000092304 0.0016168 0.016307

(5,5) 2.307·10−9 4 0.00031348 0.0040377

1 See Section 7.2.
2 Stinson-Wei-Tsfasman constructions. See Table 8.2.
3 Theorem 11.
4 Intersection-Tsfasman codes from Section 5.4.
5 Statement from [CGL01], no proof is found. The bound

from Chapter 4 is slightly inferior.
6 Theorem 3.
7 Chapter 4.
8 Theorem 13.
9 Theorem 15.

Table 8.1: Bounds on rates for infinite families of binary
codes with various separating properties.

Inner code Outer code rate
v (n,M) rate field rate

(3,1)-SS 7 (50,350) 0.1635 GF(172) 13/48 0.04428
(4,1)-SS 9 (82,738) 0.1160 GF(272) 11/52 0.02453
(5,1)-SS 11 (122,1342) 10/122 GF(210) 26/155 0.01375

Table 8.2: Stinson-Wei-Tsfasman constructions.
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