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Abstract

Separating codes (or systems) are known from combinatorics, and
they enjoy increasing attention due to applications in digital finger-
printing. Previous applications are found in automata theory and the
construction of fault-tolerant systems.

LetI" be a code of length, and (', U) a pair of disjoint subsets of
I'. We say thatT,U) is separated if there exists a coordingtsuch
that for any codewordc, . .., cp) € T and any codewordcf, . .., ) €
U, c¢; # ;.. The codel is (r,u)-separating if all pairsT,U) with
#T =t and #J = u are separated.

In this report, we give an overview of existing techniques for
bounding the asymptotical rate of separating codes, including some
constructions and construction techniques. We provide numerical re-
sults for binary £, u)-separating codes for some small values and
u. The report includes both old and new results.

Keywords
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Synthése asymptotique sur les codes séparants

Résumé

Les codes, ou systemes, séparants sont connus en Combinatoire ;
ils ont été utilisés, sous des vocables divers, dans des problémes de ta-
touage numérique. Les premiéres utilisations de ce concept remontent
a la théorie des automates et aux systemes tolérant les fautes.

SoitI" un code de longeut, et (T, U) un couple de sous-ensembles
disjoints del’. On dit que [, U) est séparé s'il existe une position
telle que pour tout mote, ..., ¢p) € T et tout mot ¢7,..., c)eU,
ci # c;. Le codel” est dit ¢, u)-séparant si tout tel couple oll'# t et
#U = u est sépare.

Nous présentons de nouvelles et d’anciennes bornes, des générali-
sations et des constructions de codes séparants. Nous fournissons des
résultats numériques pour les petites valeurseta.

Mots-clefs
systeme séparant, code intersectant

Asymptotisk oversyn over skiljande kodar

Samandrag

Me kjenner skiliande kodar fra kombinatorikken. | dei siste ara
har dei dukka opp i samband med digital fingerprenting. Andre bruks-
omrade er i autamatateori og konstruksjon av feil-tolerante system.

Lat I" vera ein kode med lengd, og lat (I',U) vera eit par av
disjunkte delmengder av. Me seier at T, U) er skilt dersom det er
ein plass slik at for alle ord ¢4, .. ., ¢,) € T og alle ord (:’1 ..... c,) €
U, har me; # c;. KodenI" er skiljande om alle slike par med#=
og #U = u er skilde.

Rapporten gjev eit oversyn over kjende teknikkar for & finna skran-
kar for den asymptotiske raten til skiljande kodar. Me far og med eit
par eksplisitte konstruksjonar, og me gjev numeriske resultat for bi-
neere {,u)-skiljande kodar for somme sma verdiarfavg u. Rappor-
ten omfattar bade nye og gamle resultat.

Stikkord
skiljande system, snittande kode
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Preface

A couple of years ago, we wrote a report on separating codes [CESO01]. During the
time that has passed, several new results have emerged. This report is an update
of the previous one, including the results we have published in [CES02, CELSO01,
CS03h/ CS03a]. We also present some new results which we hope to publish in
the near future.

It must also be mentioned that some errors has been found in [CESO1]. The-
orem[9 is somewhat weaker than the corresponding, incorrect propositions in
[CESO1] and[[CELSOQ1]. In addition there were a few misprints, which have been
corrected, particularly the best constructible rate ofLlj3and (33)-SS (in Ta-
ble 5.1 in the old version).
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Chapter 1

Introduction

The theory of separating systems has been appliedffierent areas of science
and technology such as automata synthesis, technical diagnosis, constructions of
hash functions, and authenticating ownership claims. We will make a formal and
general definition in the next chapter. Separating systems is a combinatorial con-
cept, which have been described iffelient frameworks and languages, some of
which we are going to exemplify in the introduction.

The case of (2)-separation is introduced by Sagalovich in the context of
automata: two such systems transiting simultaneously from gstate’ and from
b to b’ respectively should be forbidden to pass through a common intermediate
state. A state of the system in this case is:ebit binary string, and the moving
from one state to another is obtained by flipping bits one by one. Only shortest
paths from the old to the new state are allowed, so moving frora o' will
only involve flipping bits where: anda’ differ. The set of valid statds forms a
(2,2)-separating system, if for any four distinct statesy’, b, andd’ from I, the
transitionse — ¢’ andb — b’ cannot pass through any common state. Sagalovich’s
contribution on this topic is substantial, elg. [Sag65, Sag75]; a fairly recent survey
can be found in [Sag94].

The recent interest in separating codes comes mainly from digital fingerprint-
ing [BS98]. A vendor distributes digital copies of a copyrighted work, and she
wants to prevent the users from making illegal copies. A digital watermark is a
perceptually invisible pattern embedded in a digital file. Watermarking can be
used to give every sold copy a unique ID, a digital fingerprint, identifying the
buyer. If an illegal copy subsequently appears, the user guilty of copying may be
identified and prosecuted.

An interesting combinatorial problem arise in the venture to protect against
coalitions of pirates. If several users collude, they may compare their copies, and
every dtfering bit must be part of the fingerprint. Thus having identified part
of the fingerprint, the pirates may also change it and produce illegal copies with
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invalid fingerprint. The fingerprints the pirates are able to forge form the so-called
feasible set, defined as

F(T):={(v1,..., vp) €0"|Vi,1<i<n, 3(ay,..., ap) €T,a; =v;},

whereT is the set of fingerprints held by the piraté€s,s the alphabet, and is
the length of a fingerprint.

If the set (code) of valid fingerprints still makes it possible to trace at least
one guilty pirate out of a coalition of sizeor less, we say that the code has
the r-identifiable parent property-{PP). If the pirates are able to forge the fin-
gerprint of an innocent user, we say that this user is framed. Codes which pre-
vent framing are called frameproof codes, and this concept coincidesiidh (
separation. Other kinds of separating codes have also been used to construct IPP
codes|[BCEOQ1,[BBKO1a/ BBKO1b]. In[[Sch(3] it was proved that good
separating codes are also 2-1PP.

The design of self-checking asynchronous networks has been a challenging
problem. Friedmann et al. [FGU69] have shown that the unicode single-transition-
time asynchronous state assignment correspond,®)-(2nd (21)-separating
systems. The coding problem for automata states also motivated research on
(3,3)-SS [Ung69].

Separating codes have also been studied in a set theoretic framework, e.g.
[KS88], and Korner [K6r95] gives a series of problems equivalent th)(8eparating
codes.

The outlay of the report is as follows. Chapter 2 gives the background and
basic preliminaries for the study. Chapters 3-6 survey the available techniques for
bounding the asymptotic rate of separating codes. We make some generalisations
and improvements on former results, but in essence this techniques are known, or
even well-known. Tables of best known bounds in the binary case are presented
in Chapters 7 and 8.



Chapter 2

Preliminaries

There are a few properties which may be covered by our general definition of
separating systems. The most well-known of these is prokabishing families
[BW98], but there is also a substantial literature om)-separating systems. A
couple of years agoa(b)-partial hashing was introduced [BCE&1]. When we
define ¢4, ..., t.)-separating systems, we cover all of this: fot 2 we have the
(t,u)-separation known fromi [FGU69]; when= 1 for eachi, we havez-hashing;
and whery =a+1,t, = b—a, andt; = 1 fori < z, we have ¢, b)-partial hashing.

First let us agree on some standard notation.Q be an additive group (often
a field) called the alphabet, and denoteglits number of elements. L& be the
set ofn-tuples overQ. An (n, M), codel” is anM-subsefl” C V. If Q is a field
of g elements and’ is ak-dimensional subspaceg < V, then we say that is a
[n. k], (linear) code. We will refer to the elements@fas words.

Definition 1
A sequencdTy, .. ., T,) of pairwise disjoint sets of words is calleda, ..., t;)-
configuration if#T; = ¢; for all j. Such a configuration is separated if there is a
positioni, such that for all # I’ every word ofT; is different from every word of
Ty on positioni.

A code is(t1, .. ., t,)-separating if everyry, ..., t.)-configuration is separated.
A t-separating code is also called-8S (separating system).

In earlier works on watermarkings, ¢)-separating codes have been called
PIC (partially identifying codes) [CEQOb] afSFP (secure frameproof) [SW98,
SvTWO00,/SSWO0O0]. The current terminology appears to be older though [Sag94].
Different special cases have also appeared in literature:ftheneproof codes
from [SSWO0O0] are just#(1)-separating codes.

In the literature, the binary alphabet is dominant. An extensive study, bj-(2
SSis found in[[K&r95]. Apparently, the notions of non-binaryl(2 and (22)-SS
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were introduced in [Sag82], but the concept had been studied in [PS72, Sag73,
Sag75] under dierent names.

2.1 Basic definitions
For any wordc = (c1, ..., ¢n) € V we define the support to be

x(c) = {i|c #0}.
For any subsef C V, the support is

2(8) = J x(©).

ceS

We define the weight of subsets and codewords to be the size of their support, and
denote itw(C) :=#y(c) orw(S) :=#x(S).

Let C be a linear code. Theth minimum support weighd, of C is the least
weight of anr-dimensional subcode af. The r-th maximum support weight
m, is the largest weight of an-dimensional subcode @. Both these numbers
were first studied in.[HKM77], and the minimum support weight has received
guite some attention following [Wei91], where it was called thth generalised
Hamming weight.

It is clear thatd; is the minimum distance of the code, and likewisgis the
maximum distance of the code; so these two numbers are defined also for non-
linear codes. Several general definitionsi/pfexist for non-linear codes, but we
will not need any of them here.

We writet = (z1, ..., t.). Given at-configuration {3,..., T,), we define the
separating seéd(71, ..., T;) to be the set of coordinate positions wherg, (.., T;)
is separated. Let(T4, ..., T,) :=#O(Ty, ..., T,) be the separating weight. Clearly
O(Ty,..., T;) > 1is equivalent with T4, ..., T;) being separated. The minimum
separating weight; (C) is the least separating weight of alngonfiguration ofC.

The minimum separating weights have previously been studied by Sagalovich|[Sag94].
Clearly611(C) = d1(C).

By an automorphism oV, we shall understand any composition of permu-
tations of coordinate positions and alphabet permutations in individual positions.
These are exactly the maps which define equivalence classes of non-linear codes
in coding theory.

Remark 2.1

If z:V — V is an automorphism, the#Ty, ..., T;)) = 0(=(T1),..., z(Ty)) for
anyt-configuration(7y, ..., T). It follows thaté; is invariant over the ensemble
of equivalent codes.

10
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2.2 Basic results

Define

and ifz = 2, thenP(t1, t2) = t1t2. The following proposition generalises the results
on separating codes and perfect hashing families from [SWZ00, Alo86].

Proposition 1
Any (n, M, d), codel has

0y >n—P(t)(n—d).

Corollary 1

An (n, M, d), codel is t-separating if
d 1
->1-—.
"~ T PO

Proof: Consider any-configuration {3, ..., T,) from T, and define the sum

z=1 z
Z::ZZ Z d(x,y).

i=1 j=i+1(x,y)eT; xT;
This is the sum oP(z1, .. ., t.) distances in the code, so
> P(tq,..., t)d. (2.1)

Each coordinate can contribute at méXt,, ..., t;) to the sumx, but if any co-
ordinate does contribute that much, then the configuration is separated on this
coordinate. Hence we get that

2 <n(P(t)-1)+6;. (2.2)

The proposition follows by combining the upper and lower boupds (2.1)and (2.2),
and simplifying. O

It must be noted that, to get infinite families of separating codes with good
rate, the alphabet sizggrows extremely rapidly in the;-s, due to the Plotkin
bound. On the other hand, forfegiently large alphabets, good separating codes
are constructible from algebraic geometry. We will use the following lemma by
Tsfasman[[Tsf91] extensively throughout the report.

11



CHAPTER 2. PRELIMINARIES

Theorem 1 (The Tsfasman Codes)
For anya > O there are constructible, infinite families of cod®@V) with param-
etersfN, NR, Né], for N > No(a) and

R+6>1-(vg-1)yt-a.

Infinite families of separating codes over small alphabets can be built by con-
catenation. Though this construction is well-known in various special cases from
the literaturel[Alo86], we have not found as general a statement as the one we give
below. The outer codes for concatenation will very often be Tsfasman codes.

Definition 2 (Concatenation)

Let C1 be a(n1, Q), and letC be an(np, M) code. Then the concatenated code
C10C3 is the(ninp, M), code obtained by taking the words 6§ and mapping
every symbol on a word fror@a’;.

Proposition 2

LetI'; be a(ny1, M)y code with minimumt-separating weigh&t(l), and letl",

be a(n2, M'), code with separating weigmt(l). Then the concatenated code
I :=T201"1 has minimum separating weight= efl) . Gt(z).

Proof: Consider &-configuration {4, ..., T;) inT. Then there is a correspond-
ing configuration iy, (T7, ..., T}) which is separated on a sebf at Ieastat(l)
positions by assumption. Considering only the positions obrresponding to a
particular position € I in I'z, we get a’-configuration (7, ..., T}) in 'y where
1<7; <t forall j. Clearly, (T, ..., T;) must be separated on at |ea§:) posi-

tions, and consequent®(Ty,...,T;) > Gt(l)et(z), and the proposition follows. O
Note that” will usually not satisfy the requirements of Proposifign 1. We will
give a thorough example of the concatenation technique in Séctipn 2.3.
It is easy to verify thayy > z for any t-separating code; the alphabet must
have a distinct symbol for each of thesubsets to be separated. The following
proposition strengthens this result.

Proposition 3
If Cisalinear(ty,..., t,)-separating code ang> 3, thenzjz.:ltj <q.

Proof:. First we prove that; + 12 < ¢, for if
ThUT, D {ac|a € GF(q)},
then no third sef3 will be separated frorif; and7>.

12
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Letag, a1,..., a,-1 be all the field elements, wheog = 0 anda; = 1. Leta
andb be two independent codewords. Let

Tr:={a0a ..., a;-18},
T2 = {atla ..... at1+t2—la}’

and letTs, ..., T, be any sequence of pairwise disjoint sets such that

wheret' =t3+...+t,. Clearly,T; andT> are only separated gn(a). AlsoT and
T, are only separated gn(b). On any coordinatee y(a)n y(b), 11 + 2 different
values occur irf1, UT> andt’ different values occur ifi. Hence the configuration
can only be separated if

'+t1+t2=11+...+1,<q,
as required. O

Corollary 2
If Cis alinearg-ary, (t,u)-partially hashing code with> 2, thenu < gq.

These bounds are tight, singéhashing codes can be constructed for any

Proposition 4
Letaandb be two linearly independent codewords, and wfite {a,b+aea|a €
GF(q)}. Then(0,T) is a(q+ 1, 1)-configuration which is not separated.

Proof: We shall prove that in every positianat least one codeword ifi has a
0. If b; = 0, this holds, so assunbg# 0. Thenb + (—al._l)b,-a has 0 in positiori,
as required. O

Corollary 3
If Cis g-ary, linear(z,')-separating, themax{z,'} < gq.

This bound is tight in the binary case, sincedRseparating, binary, linear codes
are known to exist (e.g. [Sag94]).

Theorem 2
If C is a non-binary, lineaft,t')-separating, thert+1 < g+ 1.

13
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Proof: We have already proved that’ < ¢. It only remains to prove that we can
construct a non-separatedq+ 2 — r)-configuration for allk such that X ¢ < gq.
Letag, a1, ..., a,-1 be all the fields elements, whetg = 0 anday = 1. Leta and
b be two independent codewords. A non-separatgg2 — t)-configuration is
given by

({aoa, ..., a;—1a}, {a;@a+agb, .. ., a+az41-4b}).

First note thatr,a matche9 on every position not iry(a), anda+ b matcha on
every position notiny(b). In every position iny(a)n y(b), we get different field
values in the first set, angl+ 1 — ¢ different field values from tha+ a;b. Since
there are only; elements in the field, they cannot be separated. O

2.3 The tetracode and compositions thereof

The ternary constructions will make use of three ingredient codes, and apply twice
the concatenation method. We will obtain an asymptotic code which, B2
(3,1)-, and (11,1)-separating. Recall that no stronger separating properties is
possible for a ternary code, by Theorgm 2 and Coroflary 3.

The first seed is the remarkable 243]; tetracodet, defined by the generator

matrix
111
G=lo 12 ﬂ

This code is self-dual and MDS (on Singleton’s bouhd n—k +1). Itis both

an extended perfect Hamming code and a simplex (all codewords are at dis-
tance 3 apart). Thus it follows th& is 3-hashing and (3)-separating from
Propositiorj L. Furthermore, it is (2)-separating by Theorem]19. The tetracode
was proved 3-hashing in [KM88], and it was proved to have the IPP property in
[HvLLT98].

Let R1 be the [93, 7]32 Reed-Solomon code, which is both 22- and (13)-
separating, and 3-hashing by Proposifipn 1. The concatenatedicoffy has
parameters [3®]z, and by Propositiofi|2, it is (2)- and (13)-separating, and
3-hashing. With 8 codewords, this code can be concatenated @ithV) over
GF(3%) which gives a reasonable rate.

The concatenated co@a k1 o A(N) gives an infinite family of linear, ternary
(3,1)- and (22)-separating and 3-hashing codes with R1£6 ~ 0.0352.

If we only want (31)-separating and 3-hashing codes, we can obtain a better
rate by using the Reed-Solomon ca#te with parameters [1@l, 7]32, which re-
sults in the concatenated co@e R, with parameters [4@]3. Then we take the
infinite family 2((V) of codes with parametersV, K, D = [2N /3] + 1]3s of rate

14
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1/3—(3*-1)1, and the concatenated co@e 9, o A(N) is an infinite family
of linear ternary (31)-separating and 3-hashing codes with rate approximately
77/1200~ 0.0642.

Example 2.1 We sketch a construction with= 4 as well. As in the previous
example, we concatenate three codes to build the infinite family. Each code has
d/n>3/4 and thus ig2, 2)-separating by Proposition 1. The first two are doubly
extended Reed-Solomon codes. We take successively:

1. C1[5,2, 4]4;
2. Co[17,5,13]42, gettingC1 o C[85, 10]a4;

3. and finally,C(N)[N, K, D = [3N/4] + 1] 40 with ratex 1/4— (4°— 1)1~
1/4.

The final outcome is an infinite constructive family of linear quatern@g)-
separating codes with rate approximatély34 ~ 0.029

15
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Chapter 3

On (¢, 1)-separating codes

In this chapter we prove an upper bound ori)-SS. Interestingly enough, this
bound is independent of the alphabet sjze

A (1, 7)-cover free code is a code with, {)-separating weight at least equal
to 7. Such codes were studied in [GSWO00] and [KRS99] motivated by broadcast
encryption. The results in this chapter were also presentéd in [CS03a].

Partition {1, 2, ..n} into t almost equal part#s, ..., P, of size approximately
n/t. Say a codeword is isolatedon P; if no other codeword projects ontorg-
tuple onP; located at distance less thatyf)z from ¢. Denote byU; the subset of
codewords isolated oR..

Lemma 1
If Cis (¢, 7)-cover free, then every codeworaf C is isolated on at least on@.

Proof:  Suppose for a contradiction that there is a codewmrd/hich is not
isolated. Let; be a codeword which is at distance less thafi)r when projected
ontoP, fori=1,..., t. Now cg is separated froncy, . . ., ¢} on less thand/t)t
coordinates per block, or at most— ¢ coordinate positions total. This contradicts
the assumption on the separating weight O

If we let = tend to zero, we get an upper bound or1}-SS, which was found
independently in[[CS03b] and [Bla03b]. The proofs are essentially the same as
the one presented here.

Theorem 3
If Cis (1, 7)-cover free, thenC| < tq!(-2n/11,

For constant, this asymptotically give® < (1-7)/t whenn increases. This
rate is obtained by the Tsfasman codes (Thegrem 1) by Propdsition 1,ashen
t~1(1-r). The lower bound for arbitrary has been studied in more detail in
[Xin02].

17



CHAPTER 3. ON {,1)-SEPARATING CODES

Theorem 4
For fixedr and large enough, the largest possible rate ofyaary family of (¢, 7)-
cover free codes satisfi®=r"1(1—7)(1+o(1)).

18



Chapter 4

Upper bounds by projection

In this chapter we shall give a general presentation of the well-known projection
arguments for upper bounds. The technique have been used for decades, but the
results have continuously been refined in various ways, see| e.g. [Sag94]. The
latest refinements for binary, ()-SS appeared in [CS03b].

4.1 Stronger properties in the binary case

Separating codes are related to two stronger concepts. Completely separating
codes ({,t')-CSS) are used in automata theory and fault-tolerant systems along-
side the separating codes. Superimposed codg$){%l) where introduced in
[KS64], and have been studied in several papers,/e.g. [DR83, DVMTO02].
We will consider the binary case only. Consider aay’ codewords and view
them as rows of a matrix. If the code is separating, there must be at least one
so-called regular column, which is eithef = (0...01...1) with ¢ zeroes and’
ones, orxg = (1...10...0) with r ones and’ zeroes.
If the code is { ¢')-superimposed, we demand at least one column of type
X, and if the code is#(t')-completely separating, we demand bathand Xo.
Thus separating codes is clearly the weakest concept, while completely separating
systems is the strongest.tl& ¢/, superimposed codes and completely separating
codes are equivalent, since the property has to hold for any ordering of the words.
Let RSXt,1'), RS!(¢,1), and RSS(z,1') be the best possible asymptotic rates
of (z,¢')-CSS, ¢, ¢')-Sl, and ¢,1')-SS, respectively. Clearly we have

1
RS¥(1,¢) > RS'(1,7) > R°S¥¢,7) > ERss(t, 7).

We denote bﬁx(t, t") any upper bound oR*(z,1'). Let ﬁ(&) be any upper bound
on the asymptotic rate of error-correcting codes with normalised minimum dis-
tances.

19
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4.2 Improved upper bounds on(z,1')-SS

Proposition 5

Any binary(z, u)-separatingfo o, M, 61 1) codel” with separating weight&, ;, for
1<a<rtandl<b<uy, givesrise to, for any positive< min{t¢,u}, a completely
(t—v,u—v)-separatindgé, ,, M —2v, 20,1 ,+1) codel” with complete-separating
Weighw;,b =0pyurvforl<a<t—vandl<b<u-v.

Proof:  Consider twov-tuplesy and V"’ of words fromI", such that they have
separating weight, ,. Assume by translation thak’(V’) hasé, , columns of the
form (0...01...1). LetI” be the code obtained froimby deleting every column
where {,V"’) is not separated and the 2vords fromV andV’. ClearlyI” has
the length and dimension claimed by the proposition. It remains to prove the
separating weights.

Let (T,U) be a ¢,u')-configuration froml” wheret' <t—v andu’ < u—v).
Thenboth Y UT,V'UU) and (V'UT,V UU) must have separating weight at least
0y +v.w+v, Which implies that T, U) is completely separated with weight at least
0y+v.w+v- This holds even when restricting only to the positions whété’() is
separated. O

The following proposition is proved in the same way.

Proposition 6

Any completely (¢, u)-separating(n, M, 201 1) code with completely separating
weightsd,,, for 1 <a <t and1l < b < u, gives rise to, for any positive <
min{z,u}, a completely(r—v,u—v)-separatind®, ,, M —2v, 26,1 ,+1) code with
complete-separating weigagvb =0Opyurvforl<a<r—vandl<b<u-—v.

Theorem 5
We have for,u > 2 that

—/ 2RCS¥1,u)
R, <R<_ ’ ,
LURE Rcss(t—l,u—l))
RSS(t,u) >
RCSY(t—1u-1)/
Proof: Let C be a ¢, u)-CSS with rateR = R°St,4), and letC’ be the (-

1,u—1)-CSS which exists by Propositiph 6. Denotethe rate ofC’. We have
that

RSS(t 1) < E(

0 logM 6
5=t 097 L1
60,0 oo logM
Now, obviouslyR < E(é), which is decreasing id;, and this gives the result.
The bound orR®% is similar, except that the minimum distance®is d = 01 1

instead of 21 1. O

=2R/R.
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4.2. IMPROVED UPPER BOUNDS ONI{T")-SS

[(f)[[css [SIC [sS | [(r]css [ss |
21) | — 0.321¢ [ 0.5 (1,1) | 1.0000 [ 1.0000
(3.1) | — 0.199% | 0.3333 (2.2) || 0.161¢ | 0.2835
(3.2) | 0.06627| 0.07448| 0.1202 (3,3) | 0.03534 | 0.06627
(4,2) | 0.04301| 0.04552| 0.07994 (4,4) | 0.008368| 0.01630
(4,3) | 0.01533| 0.01828| 0.02951 (5,5) | 0.002042| 0.004037

! Theoren B

2 [DVMTO02Z]

3 [KLOO03]

Table 4.1: Upper bounds on completely separating codes (CSS), superimposed
codes (SIC), and separating codes (SS) over a binary alphabet.

This theorem provides a recursive bound on separating codes. The general
idea is not new, at least the derived bound of2JZSS has been known for ages,
see [Sag94]. Even so, the results we obtain heretfoy-CSS are stronger than
those recently presented In [DVMTO02] (except fet 2). B

We use the McEliece-Rodemich-Rumsey-Welch boundrf@f), as given in
the following theorem. See [Aal90, Levi98] for the non-binary form and [MRRW77,
MS77] for the original (binary) version.

Theorem 6 (McEliece-Rodemich-Rumsey-Welch bound)
For any(n, M, d) code, we have

R(6) < Hy(((¢g—1)—(g—2)6-2+/(q—1)6(1-6))/q).

where
H,(x) = —(1-x)log,(1-x) —xlog, x + xlog,(q — 1).

In Tableg/ 4.1, we summarise the rate we get for smalidr’, andg = 2. Most
of the rates are obtained by using the theorems of this chapter recursively. The first
bounds in the iterations are copied from other works. Observe that we improve
the bounds also on,{)-superimposed codes fop 3.

Example 4.1 Let C; be an asymptotic class (g, 2¢,01) (3,3)-SS. Then there is
an asymptotic class> of (61, 2%, 6,) (2,2)-CSS. We have tha&, = k /6, < 0.161,
and

Ry =k/6p= R261 <0.1615,,

which is equivalent to
61> R1/0.161
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CHAPTER 4. UPPER BOUNDS BY PROJECTION

We can use any upper bous{s) on Ry, and get
R1 < R(51) < R(R1/0.161)
Using the Theorein 6, we g& < 0.0663
Problem 4.1 Make a bound on the rate for givep,.
Problem 4.2 Retrieve a proof of the bound ¢8, 3)-SS,R < 0.0658from [CGLO1].

Problem 4.3 Is it possible to get rid of the recursion and find a simple closed
form expression for the upper bound?

4.3 Ternary bounds

In the non-binary case, complete separation is not clearly defined. Whed
we are not able to prove the recursive bound stronger than

Rqss(t, u) >

RSS(tu) < E(
I EES(t— Lu-1)

which is considerably weaker than the binary result. The reason for this is found
in the proof of Propositiors| 5 afd 6. Because there are four alphabet symbols (or
more), it is possible to have one column which separates bothr( V'uU) and
(V'urT,vuu).

In the ternary case we are able to get a strong analogue of the binary results
by the definition of ternary pseudo-completely separating weight. Lé&f ) be a
(r,u)-configuration. A column is regular if it separated(U). A regular column
iisof Type Oifx; # 1forallxe T andy; #0forally e U. Itis of Type 1ifx; #0
forall x e T andy; # 1 for ally € U. Note that one column can be both of Type 1
and of Type 2 if and only i > 3.

The pseudo-completely separating weight of a ternary €ode the largest
numberé;, , such that any(u)-configuration has at leasf, regular columns of
Type 0 and at leas, , regular columns of Type 1.

The following two lemmata can be proved using the proof of Propodition 5.

Lemma 2

Any ternary (¢, u)-separating o0, M, 011) codel” with separating weight8, ;,
forl1<a<tandl<b<u, givesrise to, for any positive< min{z,u}, a pseudo-
completely(t — v,u — v)-separatind®, ,, M —2v, 26,1 ,+1) codel” with pseudo-
completely separating weiglag, p = Oatvutv-
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4.4. BOUNDS ON LINEAR SEPARATING CODES

| [(.7/)[PCSS [SS |

(3,2) | 0.1268 | 0.2197
(4,3) | 0.03751| 0.07056
(5.4) | 0.01180| 0.02290
(4,2) | 0.08978| 0.1605
(5,3) | 0.02713| 0.05167
(5,2) | 0.06966| 0.1268

[(#7) [PCSS [SS
L1 1 1
(2,2) | 0.2197 | 0.3237
(3,3) | 0.06204 | 0.1138
(4.4) | 0.01913 | 0.03675
(5.5) | 0.006120| 0.01202

Table 4.2: Upper bounds on ternary separating codes, computed by using the
boundR < 1/t for (1,1)-SS and -PCSS (Theorér 3) and recursive application of
TheorenmJ.

Lemma 3

Any ternary pseudo-completey, u)-separatingfo o, M, 261 1) codel” with pseudo-
completely separating weigh#s ,, for 1 <a <t and1 < b < u, gives rise to, for
any positivevr < min{¢,u}, a pseudo-completely— v, u —v)-separatingé, ,, M —
2v,20,.1v+1) codel” with pseudo-completely separating Wei@m = Oty utv-

Analogously of Theorer|5, we get the following theorem. Tablé 4.2 follows
by combining Theorern| 7 with the McEliece et al. bound.

Theorem 7
We have for,u > 2 that

ZRECS%Z‘, u) )

RECSt-1u-1)/
R3(t,u)

RECSr—1u-1)/

RESSYw) < R

RSS(t,u) <R (

4.4 Bounds on linear separating codes

Let RLSS(t,u) be the highest possible rate for an asymptotic family of lingarry
(t,u)-separating code.

Proposition 7

Any linear separatingfo o, k,011] codeC with separating weight8, ,, where
l<a<tandl<b<u, givesrise to a linear separatif@p 1, k — 1,01 2] codeC’
with separating weighteg,b =0,p+1, Wherel<a<randl<b<u-1.

Proof: Letce C be a codeword of weigltt; 1. Let C’ be the code obtained by
shorteningC on every position whereis zero. It remains to prove thég ,(C’) >
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CHAPTER 4. UPPER BOUNDS BY PROJECTION

| t+u | Rate |
3 0.3537
4 0.1683
5 ] 0.09050
6 | 0.05206

Table 4.3: Upper bounds on ternary linear separating codes, computed by recur-
sive application of Corollary|4.

0.5+1(C) for all a andb. It is suficient that any ¢, b)-configuration @, B) of C’
with 0 € A has separating weight at ledkt;.1(C). Consider the corresponding
(a,b+1)-configuration 4, B") = (A, BU {c}) in C. Observe that4, B’) can only
be separated wherds non-zero, i.e. on position existing @i. Henced(A, B) =
0(A, B") > 6,5+1(C) as required. O

Corollary 4
For anyr > 1 andu > 2, we have
LSS
Rq (t, Ll) )

RESS(1) < R
9 R-SS(1,u—1)

Note that this bound depends only on the suru. We have computed nu-
merical values fogy = 3 in Table[4.B. Applying the corollary fay = 2 gives us
the same bounds as the ones we get from intersecting codes in Ghapter 5.
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Chapter 5

Almost linear separating codes

We have seen that a binary, linear code cannot be more thaj¢2parating. On

the other hand, we know that )-separating codes can be constructed from (lin-
ear) ¢+u—1)-wise intersecting codes by forming a non-linear subcode [CELSO01].
In Sectior] 5.2, we will present this technique, and correct some errors which un-
fortunately appeared in the original paper. In Sedfiof 5.1 we will present a new
statement on how far from linear g )-separating code must be.

5.1 Almost linear separating codes

Theorem 8
Let C be a binary(t,u)-SS containing the zero word, and ldte the size of the
smallest set of linearly dependent non-zero words. Then we have

t+u, whent=u=1 (mod 2)
1> (tu) =< t+u—1 whent Zu (mod 2)
t+u-—2, whent=u=0 (mod 2)

Proof:  The result is trivial forr,u < 2. We prove the lemma by induction, so
assume it holds for any smalleror u. If u or ¢ is even, the result follows by
induction becaus€ must be {,u — 1)-separating and ¢ 1, u)-separating. It only
remains to prove it for andu odd.

SinceC is (t —2,u)- and ¢, u — 2)-separating, any+ u — 2 codewords are
linearly independent by induction. Suppose there is &'set{xy, ..., X} of 1=
t+u—1 non-zero words adding to zero. Then,(.., X, X¢+1, .- -, X;,0) cannot
be separated, becaufecannot have an odd number of ones in any position. If
1 =t +u, the same argument holds foe (..., X/ ; Xe+1, - . ., X,). a
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CHAPTER 5. ALMOST LINEAR SEPARATING CODES

5.2 Intersecting codes

The first relationship between intersecting codes and separating codes appeared
in [BR8AQ]. Any linear binary (21)-SS is an intersecting code and vice versa. In
this chapter we explorewise intersecting codes for> 3.

Definition 3

A linear codeC of dimensiork > ¢ is said to be-wise intersecting if anylinearly
independent codewords have intersecting supports: Af, we say thac is r-wise
intersecting if and only if it iSc-wise intersecting.

Itis easy to verify that anywise intersecting code is also{1)-wise intersecting.

Proposition 8
For a linear, binary cod&-wise intersection is equivalent (@, 2)-separation.

The fact that linear, (2)-separating codes must be 3-wise intersecting holds
not only for binary codes, and it is proved in Proposifion 9 below. Unfortunately,
this is the only result we have found in the non-binary case.

The fact thatt-wise intersecting, binary codes gives rise to separating codes
can be generalised. The statement of the proposition, will follow from the special
caser = 3, j = 2 of Theorenj P below.

Remark 5.1

If we have a linearg-ary (2,1)-SSC, then any pair of vector§,y) is separated
from 0. Consequentlx andy intersect in some position ard is 2-wise inter-
secting. This was observed fge= 2 in [BR8Q].

Proposition 9
Every linear(2, 2)-separating code is 3-wise intersecting.

Proof: If kK =2, three-wise intersection is equivalent to 2-wise intersection
according to our definition. Any (2)-separating code is (2)-separating and
hence 2-wise intersecting by Remark|5.1.

SupposeC is (2 2)-separating, and consider three independent codewords
a,b,c. We shall prove that these three words have intersecting supports. Con-
sider the (22)-configuration Q,c+a;a,b). SinceC is (2 2)-separating, there is
a positioni whereais a # 0 andb is g # 0, andc+aisy € {a,8}. NowcCis
y —a # 0 on position. O

Due to this proposition, we can use many bounds on separating codes as
bounds on intersecting codes. For instance, by Thegrgm 19, every code with
4d > 3m is 3-wise intersecting.
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5.2. INTERSECTING CODES

Theorem 9

Leti,j > 1 be integers such that=i+ j —1 > 2. Consider a-wise intersecting,
binary, linear codeC, and a non-linear subcodec C. Let(i, ) be defined as
in Theoren{ B. The codE is (i, j)-separating if and only if anyi, /) non-zero
codewords are linearly independent.

Proof: If T"is (i, j)-separating, then anyi, ;) codewords are independent by
Theorenj 8. The opposite implication is a bit tedious to prove. We start by proving
that anyr + 1 codewords being linearly independent isfisient forI” to be ¢, j)-
separating. This holds as the theorem states irrespectively of the paritiagaaf
Jj. Afterward we will strengthen the result in the cases whiexred; are not both
odd.

Choose any (two-part) sequenceof ¢ + 1 codewords front’,

Y = (a’l ..... a;.;C'l ..... C;+l—j).
is.

By Remar,Y' is (j.7+1- j)-separated if and only i¥ :=Y'—c] ;
Hence it sffices to show that

is (j,t+1— j)-separated.
Since ther + 1 codewords ofY” are linearly independent, so are thérst
codewords ofY. Now, consider

X :={ag+Cy,....a1+C_j;a1,.... 8},

which is a set of linearly independent codewords frorand hence all non-zero
on some coordinate Sincea; + ¢; IS non-zero on coordinate ¢; must be zero
for all /. HenceY, and consequently’, is separated on coordinate

This completes the first step. In the case whegej (mod 2), we get that
t iIs even, and consequently thdirst codewords oft” are linearly independent
whenever any words ofY’ are. Therefore it is gticient that any codewords of
I" be linearly independent.

Finally, we consider the case wherand; are both even. We shall again show
thatY’ is separated. If all the+ 1 words ofY” are linearly independent, then we
are done by the first part of the proof. By assumption, we know thatt ary
words are linearly independent. This gives two cases to consider:

1. c;+1_j is the sum of the first words, which are linearly independent.

2. ¢,_; isthe sum of the—1 firstwords and;_,

; is independent of the others.
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CHAPTER 5. ALMOST LINEAR SEPARATING CODES

LetY’, Y, and X be defined as before. Consider the first case first. Anj
non-zero words of are linearly independent, while all th@on-zero words sum
to 0. Hence, the only linear independence found between the elemeXitis dihat

O=bi+...+bj+ax+...+a, (5.1)

whereb; = ¢; + a;. It follows that ther — 1 first words ofX intersect, sinc& is
t-wise intersecting. Thus there is a positipmvherea; is 1 fori=1,...,j—1 and
criszerofori’ =1,..., t— j. Furthermorea; is one in positiori by (5.1). Hence
Y is separated.

In the second case, we get that thr@n-zero words of” are linearly indepen-
dent. Thus the result follows like the first part of the proof. O

It is perhaps not obvious how these propositions may be used to construct
non-linear separating codes with a reasonable rate. The remainder of the section
is devoted to explaining this.

Lemma 4
Given an[n, rm] linear, binary code”, we can extract a non-linear subcddef
size2" such that anym non-zero codewords are linearly independent.

Proof: Let C' be the [2-1,2"—1—rm,2m+ 1] BCH code. The columns

of the parity check matrix o€’ make a sef” of 2" — 1 vectors fromGF(2)™,
such that no & of them are linearly independent. Now there is an isomorphism
¢: GF(2)™ — C, so letl"' = ¢(I"") U {0}. O

Lemma 5
Given an[n, rm+ 1] linear, binary cod&”, we can extract a non-linear subcdde
of size2” + 1 such that an®m + 1 codewords are linearly independent.

Proof: LetC’ bethe[Z,2"—1-rm,2m+ 2] extended BCH code. The columns
of the parity check matrix of” make a sel” of 2" vectors fromGF(2)*+1, such
that any 2:+ 1 of them are linearly independent. Now there is an isomorphism
¢ GF(2Y™1 - C, soletl = ¢(I") U {0}. O

Problem 5.1 Improve Lemmatg/4 arjd 5.

Theorem 10

Given an[n, nR] t-wise intersecting binary (asymptotic) code, there is a construc-
tion of a non-linea(i, j)-SST" of rateR/ |’ /2|, wherej =t+1—i,andt =r—1

if i andj are even and = ¢+ 1 otherwise.

Proof: Setj:=t+1—i, and leti(i, j) be as defined in Propositiph 9. Observe
that [#'/2] = [1(i,j)/2]. By Lemma] 4, we can construct an asymptotic cbde
with rateR/ |1(i, j) /2] = R/ |¢' /2] where any(i, j) codewords are linearly inde-
pendent. Thef is (i, j)-separating by Propositi¢n 9. O
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5.3. EXISTENCE RESULTS

| (1.) | SSrate | | (1.7) [ SSrate | | (1.7) | SSrate |
(2,1) | 0.2075 (4,2) | 0.004580 L1 |1

(3,1) | 0.03211 (5,2) | 0.001262 (2.2) || 0.06422
(4,1) | 0.01164 (4,3) | 0.001262 (3.3) | 0.003054
(5,1) | 0.003054 (5,3) | 0.0004041 (4.4) || 0.0005388
(3,2) | 0.01164 (5,4) | 0.0001765 (5,5) || 0.00006268

Table 5.1: Existence bounds on binary separating codes based on intersecting
codes (Theorein 11).

Problem 5.2 Is it possible to generate completely separating codes with good
rates by a similar technique?

5.3 Existence results

Using intersecting codes, we get the following existence bounds on separating
codes. The numeric values for smalandu are shown in Tablg 5.1. Except

for (2,1)- and (22)-SS, they are unfortunately not very good, as we will see in
Chaptef b.

Theorem 11
For anyi and anyj, there exists asymptotically, j)-SS for any rate

1-1log(2-1)
<
- l7'/2]

wheret =i+ j—1andtr =t if i and; are both even and = r + 1 otherwise.

Proof: In [CZ94], it was shown that for Sficiently largen, and for any rate
R<1- %Iog(z‘ —1), there are-wise intersecting linear, binary: [k] codes of
rate R. Applying this to Theorerp 10, we get the result. O

5.4 Binary constructions

Several good(u)-separating codes may be constructed from intersecting codes
and columns from the parity check matrices of BCH codes. In Table 5.2, we use
ar-wise intersecting code from Propositjon 10, and extract a non-linear subcode
where anyr words a linearly independent, using Lempja 4. This is concatenated
with a Tsfasman code.
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CHAPTER 5. ALMOST LINEAR SEPARATING CODES

Inters. code Inner code Outer code | rate

t \[n,k] t \ (n, M) q \rate
(22)[[3][2"-214] |2 | (126219 214 [ 123/508] 0.02690
(32) | 4|[2°-218] | 4 | (51029 19 | 1/9 0.001851
(33) | 5| [2t-222] | 6 | (204627) 112 | 1/90 0.00003757
(4,2) || 5| [211-2,22] | 4 | (204621 | 432 | 17/168 || 0.0005367
(43) 6| [213-226]| 6 | (213-2,28) | 28 | 1/60 0.00001628
(4,3) || 6| [21°-2,30] || 6 | (21°—2,210) | 210 | 19/372 | 0.00001559
(4,4) | 7| [2¥®-230]| 6 | (2¥5-22%0) || 210 | 15/496 | 0.000009230
(5.5) || 9 | [22°-2,50] | 10 | (22°—2,210) || 210 | /775 || 2.307-107°

Table 5.2: Constructions using punctured dual BCH codes (Prop. 10) as inner
codes.

Note that for (43)-SS, two constructions are given. For the latter construc-
tion we use a 7-wise intersecting code in order to get a bigger alphabet for the
outer code. This loses rate for the inner code, but gains for the outer code, and
the two concatenated codes have roughly the same rate. )¢5, the 9-wise
intersecting dual BCH code is so small that the Tsfasman code cannot be con-
structed as outer code with positive rate. Instead we use a 13-wise intersecting
code. Probably there are cleverer choices for inner codes than dual BCH codes.

Proposition 10[CZ94]
The punctured dual of th2-error-correcting BCH code with paramet§2s+1 —
2,414 2,2% —2' 1], ist-wise intersecting.

Explicit constructions of infinite families of-wise intersecting codes with
non-zero rates where found om [CZ94]. These families give rise to separating
codes.

Lemma 6 [[CZ94]

Let C1 be an[ny, k1, d1], code withg = 2¥2 and minimum distance; > n1(1—
2171). Let Cy be an[ny, k2, d2] binaryz-wise intersecting code. Then the concate-
nationCj o Cs is a binaryr-wise intersectingnino, k1k2, d1d>] code.

Lemma 7 [CZ94]
There is a constructive infinite sequence-efise intersecting binary codes with
rate arbitrarily close to

1\ 2r+1
R,:(Zl"— > T2 234 0(r)).

22t+1 -1 221‘ -1
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5.5. UPPER BOUNDS ON INTERSECTING CODES

Proof. By concatenating geometriev, K, D], codes from Theoref 1 satisfying
D > N (1-2") with ¢ = 2%*2, and with a rate arbitrarily close tdZ —1/(y/q—
1), with the [Z+1 -2, 41 +2,2% —2' —1] code of Propositioh 10, we obtain the
result. O

Proposition 11
There is a constructive infinite sequence of bingty + 1 — j)-separating codes
of rate2-3¢-1(1+ o(1)).

5.5 Upper bounds on intersecting codes

The upper bounds on intersecting codes are similar to those for separating codes
as presented in Chapfdr 4. We include them here for reference.

Theorem 12
A t-wise intersecting cod€[n, k,d] gives rise by projection to & — 1)-wise
intersecting cod€;_1[d, k —1].

Proof: Leta e C be a fixed element of minimum weighit Denote byC, the
[n, k—1] supplementary subspace{d a} in C. Consider anys(~ 1) independent
codewords{s!,..., "1} in C,. Then{a,bt,...,5"~1} is full rank, hence these
codewords ol” intersect (on the support @j. ThusC/a, the projection ofC, on
the support ot is a (¢ — 1)-wise intersectingd, kK — 1] code. O

To get an upper bound on the dimension of such codes in the binary case, we
use recursively the best known upper bound on error correcting codes, namely the
McEliece et al. bound (see Theorgéin 6).

Fort = 3, we get the following sequence of codes:

C3[n k,d], Cold k—-1,d], Ci[d k-2],

where(; is i-wise intersecting, and has write rake.
FromCj, we have thak — 2 < d’, which implies that

Ry=(k-1)/d<(d'-1)/d<d'/d.

By the McEliece bound, this implieR, < 0.28. Finally we have

<—<0108

n

R1=E 0.28d+1
n

where the final bound follows by applying again the McEliece bound. The fol-
lowing corollary arise from the same technique and some other values for
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CHAPTER 5. ALMOST LINEAR SEPARATING CODES

Corollary 5
The asymptotic rate of the largestvise intersecting binary code is at mag,
with Ro ~ 0.28 R3~ 0.108 R4 ~ 0.046 Rs ~ 0.021, Rg ~ 0.0099

Note that the McEliece bound is only valid asymptotically. In particular, the
[126,14] 3-wise intersecting code from Propositjor} 10 has rg&= R3.
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Chapter 6

Existence bounds

Random coding is a standard technique for proving lower bounds on codes, for
separating codes as well as error-correcting codes. In this chapter, we spell out a
general framework of this technique, with a few variations.

6.1 Random coding bound

Let C be a random#, M)-code (uniform distribution) and compute the expected
numberé€ of (¢, u)-configurations T, U) which are not separated. Whenewex
M /2 there is at least one cod® with at mostM /2 bad configurations, and if we
remove one word from each bad configuration, we getam(/2) code with the
(z,u)-separating property.

The probability that a coordinateseparatd/ and T is independent of the
choice ofi by the randomness assumption; denote ipyt,u). The probability
that a given T, U) is not separated is

Pq,t,u,n = (1—p(q,t,u))n, (61)

M t+u
o= () () o 62

Writing M = ¢®" and lettingn go to infinity, we get that infinite sequences of
(r,u)-separating codes exist for all ratBssuch that log€ < Rn, i.e. such that

which implies

1
(t+u)R+ - log, Pyrun < R.
Making use of[(6.]L), we get the following proposition.
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Proposition 12
Infinite sequences df, u)-separating codes exist for all ratRssuch that

1
R<——| 1- t.u))"L.
<1 -199(Q-plg.1u)

We now apply the previous proposition to specific valueg, ofu.

Theorem 13 (Binary lower bound)
There is an infinite family of binar{t, u)-SS with rate
-1

R>(t,u) > max
2(t.u) O<p<lt+u—1

log, (1-¢"- (1—g)" — " - (1-g)")

Proof:  Let g denote the probability of choosing a 1 in a given position in a
given word. We get that

pRru)=g'-(1-p)+p" (1-p)"
Thus the theorem follows from Propositipn| 12. O

Problem 6.1 The analogous bound for superimposed codes is maximisegfor
t/(t+u). Find analytically the value ofp which maximises the bound in Theo-
rem[13.

For (2 1)- and (22)-SS, this gives the well-known bounds [Sag94], which
also coincide with the bounds from intersecting codes in Sefctign 5.3. Numerical
values are given in Tabje 6.1.

Theorem 14 (Lower bound for large alphabets)
If g > tu, there exists an asymptotigary (¢, u)-SS with rateR ~ (r+u—1)"1(1-
log, 7u).

Proof: We prove that such codes exist with uniform distribution in each coordi-
nate position. Since > ru, we get that

plg.tu)>((g—1)/q9)" 21—-1tu/q.

Now the theorem follows directly from Propositipn|12. O
Letting ¢ tend to infinity, we also get the following corollary.

Corollary 6
For suficiently largeq, there exists an asymptotigsary (¢, u)-SS with rateR ~
(t+u—-1)"1.
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6.1. RANDOM CODING BOUND

p=1/2

Theoren) 13

Theoren) 1p

(1.7)

R

R

| %

R Tq

(2,1)
(3,1)
(4,1)
(5,1)
(2,2)
(3.2)
(4,2)
(5,2)
(3.3)
(4,3)
(5,3)
(4,4)
(5.4)
(5,5)

0.2075
0.06422
0.02328
0.009161
0.06422
0.02328
0.009161
0.003787
0.009161
0.003787
0.001616
0.001616
0.0007058
0.0003134

0.2075
0.06422
0.03138
0.02004
0.06422
0.02328
0.009160
0.003991
0.009161
0.003787
0.001616
0.001616
0.0007058
0.0003134

0.5000000
0.5000667
0.7886795
0.8322462
0.5000000
0.5000000
0.5000000
0.6666755
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000

0.1491
0.06928
0.03999
0.02595
0.04029
0.01584
0.007402
0.003828
0.005707
0.002456
0.001204
0.0009489
0.0004229
0.0001686

NDNPNDNDNNNNDNNDNDOO OTw

Table 6.1: Numerical values of the lower bounds given by Theofeins 1B and 15,
with optimal choices foly andg. We also give the lower bounds obtained by

random coding with symbol probabilitg = 0.5.
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CHAPTER 6. EXISTENCE BOUNDS

The best known upper bound onu)-SS for largeg is R < 1/t, which is the
bound on £, 1)-SS. Observe that for moderatethis upper bound is rather close
to the upper bound proved above.

Conjecture 1
For ¢ sufficiently large, the best possible asymptotic rate(fa)-SS isR = (¢ +
u—1)"1,

This conjecture has been proved for Z2-SS (see| [Sag94]) as well as for
(1.1)-SS as we saw in Chapter 3. Blackburn [Ble03a] also asked how the rate
behaves when the lengthis fixed and the alphabet sizetends to infinity. For
(z,1)-SS this was answered in [Bla03b].

6.2 Random constant-weight coding bound

In this section we consider binary separating codes with constant weight. In some
cases, we can prove that such codes exist with rates above the bound from Theo-
rem[I3. This technique was established for superimposed codes in/[AZ88].

Letq > 2 be an arbitrary integer. The constant-weight code is obtained by con-
catenating a randomw( M), code with an 4. g, 2), inner code, where all words
have weight 1. Clearly this gives an £ qw, M), code where all the words have
weightw. The random outer code is built by choosing for each coordinate in each
codeword an element frotA, with uniform probability.

The bits corresponding to one position in the outer code will be referred to as
ablock Thus the code has lengthblocks orn bits. The following argument is
analog to that of the previous section, working on blocks rather than on individual
coordinate positions.

Let T andU be disjoint sets of codewords of sizeandu respectively. The
probability thatl andU be separated on blocks independent af and is denoted
p(q.t,u). The probability thaf” andU are not separated at all is

Pq,t,u,w = (1—p(q,t,u))w. (63)

The expected number of non-separated pai& as given in[(6.R), and letting
go to infinity, we get that«(u)-SS exist for all rate® such that log€ < Rgw, i.€.
such that

1
a1 0921 pa.1.). (6.4)

It remains to calculatg(q, t, u).
Write the elements of andU as K1, ..., X Y1, Y.). Since a codeword has
one and only one 1-bit in each block, each block has at most one column of the
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6.2. RANDOM CONSTANT-WEIGHT CODING BOUND

forma; =(1,..., 1;0,...,0) and at most one of the form = (0,...,0;1,...,1) in
blocki.
The probability of having a column of foriay in blocki is

n=(37(a-2) 65)

because th&; can be chosen freely, while, ..., X; must have the same symbol
in block i of the outer code. All the vectogsmust have a diierent symbol in the
outer code. Likewise the probability of having a coluapis

1,41 1!
The probability of having both column typesg anday is

1 1\ +u—2
By common inclusion-exclusion, we gelg,?,u) = P1+ P>— Py 5.

Theorem 15 (Binary lower constant-weight bound)
There an infinite family of binaryz, u)-SS with rate

Ro(t,u) > max

_—IO P* ,t,u ’
0=23...q(t+u—1) g, P*(q.1,u)

where

1,1 1\ 1\4-1 1\! 1\ 71\ Hu-2
par-f-() 013D (DG ™)

q q q q q/\q
Numerical values are given in Taljle 6.1. Note that constant weight codes

only improve the bounds for,(1)-SS fort > 2. Furthermore, these bounds match
exactly the bounds on,(1)-superimposed codes as givenlin [DVMTO02].

Problem 6.2 For (z,1)-separating code, we have constructive lower bounds on
the rate for a given separating weight and [DRR89] gives an existence bound
for (z,1)-superimposed codes with a given superimposed distance. Is it possible
to get stronger results foft, 1)-SS with a guaranteed separating weight by some
form of random coding?

Problem 6.3 Develop a lower bound on the rate (fu)-SS,r > u > 2, for a
guaranteed separating weight
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CHAPTER 6. EXISTENCE BOUNDS

Problem 6.4 For (¢, 1)-superimposed codes, better rates can be obtained by con-
sidering random constant-weight codes. That result appeared in [DRR89], and
numerical results were presented in [DMRO0O]. Give an analogous proof for sep-
arating codes.

Problem 6.5 In [DVMTO0Z2], the authors suggest that results from [DRR89] can
be extended foft, u)-superimposed codes wittr> 1. Can this be done foft, u)-
SS as well?

6.3 Lower bound on superimposed codes

The bounds presented in this chapter are very similar to the ones given for su-
perimposed codes in [DVMT02, Section 3.5]. To show this analogue, we include
their result as well.

Theorem 16
For anyr > u > 1, the best asymptotic rate of{au)-superimposed code is at least

S maxkE1(t,u), Eo(t,u)

- t+u-1 (6.8)

where
Eq(t,u) = —Iogz<1— #) (6.9)
Ez(t,u)=q=r2%’).<”—logz [1—(%)1_1<1—§>u]. (6.10)

The bound given byE; is correspond to Theorgm|13, whei@, 1, u) = ' (1 -
g)S‘ contains one term instead of two, as only one column type gives the superim-
position property. The maximising value gfis ¢/(¢ +u).

The bound given by, correspond to Theorem|15, wherg. ¢, u) = P», again
because only the column tyjpe gives superimposition.
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Chapter 7
On (2,1)- and (2, 2)-separation

The two simplest cases,[®- and (22)-separation are the ones most studied in
the literature. It has been found that Proposifipn 1 can be considerably strength-
ened in these cases. Except for the construction of an asymptotiz $3 with

rate 01845, all the results in this chapter have appeared elsewhere, and most of
them are even well-known classics. We include them for reference.

Theorem 17
If I" is a code with minimum distane& and maximum distances, then26, 1 >
2d1—mj1.

Proof: Let (c;a b) be a (21)-configuration. Letting the three words be rows of
a matrix, we have essentially four types of columns: Type 0 where all the elements
are equal, Type | wheraor b differs from the two others, Type A whecdiffers
from the two others, and Type B with thredfdrent elements. Let denote the
number of elements of Type

Consider the sum

YX:=w(c—a)+w(c—b)>2d.
Observe that
X=2(va+vg)+v.

Clearly we have
0(c;a,b) =va +vp,

and
w(@a—b)=vg+v,

sov| < mj. It follows that

20(c;a,b) > 2dy — my.
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CHAPTER 7. ON (21)- AND (2,2)-SEPARATION

O
For (2 2)-SS, the situation is not as clear as it is forl(2SS. We get a similar
result for the binary case only (Theorén] 18). In the non-binary case we get only
a suficient condition ford,» > 0 (Theoreny 19).

Theorem 18
Let I" be a binary code with minimum distande and maximum distance:;.
Then46, 5 > 4d1 — 2m1 —n. If T is linear, themf2 2 > 4d1 — 3m;.

This result is a classic one which dates at least from [Sag75]. A proof can
be found in [KS02], where they also show and use the fact that if the non-linear
codeTl is contained in a linear codg with maximum distancez’l, then 45, >
Ad1—2m1 —m.

In the non-binary case, we have not managed to find a bourdd grout we
have a sfficient condition for (22)-separation. The following theorem appeared
in [CESO2] and the proof will be given in the following section.

Theorem 19
If a code satisfiedd, > 2my +n, or if 4d1 > 3m1 and it is linear, then it 2, 2)-
separating.

7.1 0On(22)-SS

Let I be an g, M) code with minimum weight/; and maximum weightn;.
Let ({c,c},{a b}) be a (22)-configuration which is not separated. We shall
deduce some conditions @l andmj which are necessary if ¢, c}, {a,b}) not
be separated. By inverting this conditions, we géfisient conditions fof" being
separating.

By RemarK 2.1, we can assume thlat 0 andc=(1,...,1,0,...,0). We write

Letr be suchthat; =1 fori <r andc; =0 fori > r.
We consider the sum

> :=d(0,a)+d(0,b)+d(ca)+d(c b)
=w(a)+w(b)+w(@a-c)+w(b-c).

We have trivially that
4dy <E < 4my. (7.1)
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Consider now the matrix with ron@ c,a,b. Let x; be thei-th column in this
matrix. We have four main types of columns:

Type 0: x; =(0,0,0,0),

Typel: x; € {(0,0,0,a),(0,0,a,0)}, a#0,
Typella: x; € {(0,1,0,0),(0,1,1,1)},
Typellb: x; € {(0,1,0,1),(0,1,1,0)},
Type lll: x; € {(0,1,0,5),(0,1,5,0),(0,1,1,5),(0,1,5,1)}, p&{01}.

We have now that
=) o(x), (7.2)
i=1
wheres(X;) is O for Type 0, 2 for Types | and Il, and 3 for Type lIl. Let denote

the number of columns of Type X. Then we get

n=vo+vi+vy+v, (7.3)
2 =2v+2v + 3w (7.4)

Proposition 13
If (O,c;a, b) is not(2,2)-separated, then

> =w(c)+w(a-b)+w(a+b-c).
Proof: We have trivially that
n—w(C) =vo+v. (7.5)
Define two words

y=(1y2....v):=a+b-c
z=(z1,22.....2,) ;= a—Dh.

We have that

x; of Type O =>y=0 A z;=0

x; of Type | =>y=1 AN z;==%£1

x; of Type lla >y=x1 A z;=0,

x; of Type llb =>y=0 A z==%1

x; of Type IlI >y € {f. -1} = {a #0}

Azi € {£(f—1). +p} = {a #0}.
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This gives

n—w(@+b—c)=n—w(y) =vo+vp.
n—w(@a—b)=n—w(z) = vo+vja.

By adding together the two equations above as well a$ (7.5), we get
3n—(w(c)+w(a—b)+w(a+b—-c)) =3vog+vija+vip +v.
From (7.4) and[(7]3) we get that
Y =3n—(Bvo+via+vip+v) =w(c)+w(a-b)+w(a+b-c), (7.6)
as required. O
We observe that(a, b) = w(a—b) andd(0, ¢) = w(c) are distances in the code;
hence they are bounded by . If C is linear,w(a+b—c) is also a distance in the

code, and thus bounded . If C is non-linear, we still haver(a+b—c) < n.
This gives Theorern 19.

Example 7.1 From the proposition we get that(®, c; a, b) is a binary(2,2)-NSC
and4d; = 3m, then

w(c) =w(a—b) =w(a+b—-c)=mq =4I,
w(a) =w(b) =w(a-c)=w(b—-c)=d1 =3l

It turns out that the only possibl€,2)-NSC is the following, or replications
thereof:

ol [ooo00
c| 11110
al = 11001
bl [10100

Note that the linear codén, b, c) has alsad; = 3andmy = 4.

7.2 Asymptotic results in binary

In Table[7.1, we present up to date bounds ari)2and (22)-SS. The construc-
tion of non-linear (21)-SS is new, and thus is presented in the following section.
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Bound [21)-SS[ (2258 |
Linear construction 0.156 | 0.02622
Linear existence 0.2075 | 0.0642[Sag82]

Non-linear construction 0.184% | —
Non-linear existence | 0.207% | —

Linear upper bound | 0.281 0.108[CELO1]
Non-linear upper bound 0.5 0.2835[Sag94]

1 Bounds from intersecting codes [CZ94]. These
bounds are also stated in [Sag94], with the possible
exception of the construction.

2 Kerdock-Tsfasman construction (this section).

3 [K&rog). Theorerr[B provides an alternative proof
for the upper bound.

4 BCH/intersecting construction.

Table 7.1: Bounds on rates for infinite families of binary
(2,1)-SS and (22)-SS.

| Property | 0> | Mmin.m| n|logM |
(2,1)-SS| 22 _3.2m/22 4] 15 7
(2,2)-SS| 2m—4—-3.2m/%72 8| 255 15

Table 7.2: Kerdock codes and separating properties.
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7.2.1 Kerdock constructions

In [KS02], it was pointed out that shortened Kerdock codes have some nice sepa-
rating properties. Here we shall combine this discovery with the Tsfasman codes
to break some asymptotic records.

The Kerdock codes [Ker72], which are defined#or 4 andm even, are non-
linear, binary codes with parameterg! (22", 2mn=1_ 2m/2-1y The Kerdock codes
have only four non-zero weightg2”—1 — 2m/2=1 pm=1 om=1_4 om/2-1 om\ By
shortening the Kerdock codes on one position, we get rid of the all-one word, and
obtain a class of three-weight cod&4m), where

n=2"-1,
logM =2m -1,
dy = 2m—l_2m/2—l,

my=2""1 4 27/%7,

Krasnopev and Sagalovich showed that#or 4, K'(m) is a (21)-SS, and for
m > 8, itis a (22)-SS. The fact thak’(m) for m > 4 is (2 1)-separating follows
directly from Theorerp 77. Proving any lower bound@n requires the following
two lemmata.

Lemma 8
The one-shortened Kerdock col§m) is a subcode of the one-shortened, second-
order Reed-Muller code, which is linear.

This lemma follows from the fact tha (m) is a subcode of the second-order
Reed-Muller code.

Lemma 9
The one-shortened, second-order Reed-Muller code has maximum dis@ﬁce
3.2m=2,

Considering the expression fBin (7.6), we see tha& (m) is (2 2)-separating.

The two first weights are distances KY(m) and bounded byn;. The third
weight is a weight in the one-shortened, second-order Reed-Muller code, and thus
bounded byn}. ThusK’(m) is a (2 2)-SS wheneverd> 2my + m’, which holds

for m > 8 as claimed. The details on these codes are shown in[Table 7.2.

The (2 1)-SS obtained is a good one, and if we concatenate it with a Tsfasman
code of rate 12—1/10 and minimum distancg&= 1/2 overGF(11%), we get an
asymptotic class of (2)-SS with rate (845 which is a new record.

Unfortunately, it does not appear to be possible to get any stronger separation
properties in this way, and the,@-SS is not a record breaker.
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7.2. ASYMPTOTIC RESULTS IN BINARY

If we could use the AG codes from [Xin02] (see the following theorem) as
outer codes, we would get a,@-SS with rate 033, but Xing’s theorem is
non-constructive.

Theorem 20 (Xing)
Suppose thaj = p? with p prime, and that is an integer such th&t< ¢ < \/g—1.
Then there is an asymptotic family ¢f 1)-separating codes with rate

R—l 1 1-2log,t
ST Va1 i(va-1)
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Chapter 8

Asymptotic Results

In Table[8.1, we present the known upper and lower boundszfa)-£S with
certains andu. Most of the bounds have been presented in previous chapters.

The best constructions of (1)-SS originates from [CEQDa], where finite frame-
proof codes designed by Stinson and Wei (see Lemrnha 10 below) are concatenated
with Tsfasman codes. We can improve this construction significantly by using a
larger,g-ary alphabet for the outer code, wheres not a power of 2. These new
improved constructions are presented in Tablg 8.2.

Lemma 10[SW9E]
For any prime powerv, there is a constructible, binafyv/2|,1)-SS with param-

eters(v2+1,v3+v).

Problem 8.1 Very good constructions of superimposed codes are presented in
[DMROQ]. Can those techniques be used to obtain better inner codes and thus
improve the present asymptotic constructions?
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Lower bounds Upper bounds

(t.7) Constructive\ Non-constructive

(2,1) | 0.1845 0.2075 0.5-6
(3.1) | 0.04428 0.06928 0.333%
(4,1) | 0.02453 0.03999 0.28
(5,1) | 0.01375 0.0259% 0.8
(2.2) | 0.02690¢ 0.0642238 0.2835
(3.2) | 0.00185¢ | 0.02328 0.1207
(4,2) | 0.0005367 | 0.00916% 0.07994
(3,3) | 0.00003757 | 0.00916% 0.0658
(4,3) | 0.00001628 | 0.00378% 0.02957
(4,4) | 0.00000923f) 0.001616 0.01630
(5,5) | 2.307-107° 4| 0.0003134 0.004037

1 See Sectioh 712.
2 stinson-Wei-Tsfasman constructions. See Table 8.2.

3 Th

4 Intersection-Tsfasman codes from Section 5.4.

eore.

5 Statement fromi [CGLO1], no proof is found. The bound
from Chaptef }4 is slightly inferior.

5 Th

eoren[B.

’ Chaptef 4.

8 Th
9 Th

eorem 1B.
eorem_1b.

Table 8.1: Bounds on rates for infinite families of binary
codes with various separating properties.

Inner code Outer code rate
v | (n.M) | rate field | rate
(3,1)-SS|[ 7 | (50,350) | 0.1635]] GF(17%) | 13/48 || 0.04428
(4,1)-SS|| 9 | (82738) | 0.1160|| GF(27%) | 11/52 | 0.02453
(5.1)-SS|| 11| (1221342)| 10/122| GF(2%% | 26/155| 0.01375

Table 8.2: Stinson-Wei-Tsfasman constructions.
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