Diffusion

and a Key-Recovery Attack on a WM Scheme by Li and Yuan

(Hans) Georg Schaathun

Department of Computing University of Surrey

22-23 September 2008

Do not reuse the key

Andrew Ker

- Keys are reused in cryptography
 - The one-time pad is not practical
- The solution is diffusion
 - Each key bit is spread widely across output
 - Dependendy between key and output is too complex for analysis
- We shall see lack of diffusion later (stay awake)

Watermarking is not Cryptography

Ingemar Cox

If we don't study watermarking as a cryptographic problem, how do you know that cryptanalysis cannot break it?

- If it can be cast as a cryptographic problem
 - you have to use cryptology in the design,
 - because your adversary may use it in the attack
- Cryptology is a methodology, not just a series of primitives
- Admittedly, Li-Yuan is better seen as a layered system
 - We break the cryptological layer
 - We do not touch the watermarking layer (embedding)
- i.e. Cox' view may stand . . . for now

22-23 September 2008

Watermarking is not Cryptography

Ingemar Cox

If we don't study watermarking as a cryptographic problem, how do you know that cryptanalysis cannot break it?

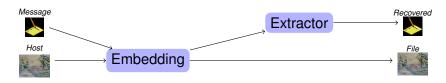
- If it can be cast as a cryptographic problem
 - you have to use cryptology in the design,
 - because your adversary may use it in the attack
- Cryptology is a methodology, not just a series of primitives
- Admittedly, Li-Yuan is better seen as a layered system
 - We break the cryptological layer
 - We do not touch the watermarking layer (embedding)
- i.e. Cox' view may stand . . . for now

Watermarking is not Cryptography

Ingemar Cox

If we don't study watermarking as a cryptographic problem, how do you know that cryptanalysis cannot break it?

- If it can be cast as a cryptographic problem
 - you have to use cryptology in the design,
 - because your adversary may use it in the attack
- Cryptology is a methodology, not just a series of primitives
- Admittedly, Li-Yuan is better seen as a layered system
 - We break the cryptological layer
 - We do not touch the watermarking layer (embedding)
- i.e. Cox' view may stand . . . for now

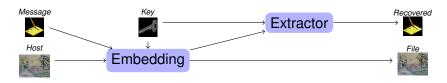


Outline

- Authentication and Watermarking
- 2 Li-Yuan Authentication WM
- How to break it
- 4 How to fix it maybe
- Closure




- Digital Watermarking 'hides' a message in another file (the host)
- The watermarked image can replace the cover
 - Perceptually Equivalent
- In fragile watermarking
 - The host cannot be modified without destroying the hidden message
- In robust watermarking
 - The hidden message cannot be modified or destroyed without destroying the host

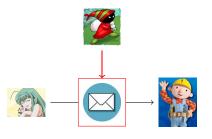


- Digital Watermarking 'hides' a message in another file (the host)
- The watermarked image can replace the cover
 - Perceptually Equivalent
- In fragile watermarking
 - The host cannot be modified without destroying the hidden message
- In robust watermarking
 - The hidden message cannot be modified or destroyed without destroying the host

- Digital Watermarking 'hides' a message in another file (the host)
- The watermarked image can replace the cover
 - Perceptually Equivalent
- In fragile watermarking
 - The host cannot be modified without destroying the hidden message
- In robust watermarking
 - The hidden message cannot be modified or destroyed without destroying the host

- Digital Watermarking 'hides' a message in another file (the host)
- The watermarked image can replace the cover
 - Perceptually Equivalent
- In fragile watermarking
 - The host cannot be modified without destroying the hidden message
- In robust watermarking
 - The hidden message cannot be modified or destroyed without destroying the host

The Authentication Problem



- Alice sends a message to Bob
- Bob wants to assure that it is authentic

The Authentication Problem

- Alice sends a message to Bob
- Bob wants to assure that it is authentic
- Eve wants to modify the message and fool Bob

- Cryptograhic solutions
 - Message Authentication Code (MAC) Secret Key
 - Digital Signatures Public Key
- Watermarking embeds Authentication Information in the file
 - no appended signature to handle
 - everything fits into the host file format
- Creating and attacking the authentication information
 - remains a cryptological prolem
 - layered system (here Cox and I agree)
- It does not matter if the designer agrees
 - I, as an attacker, can use cryptology anyway

- Cryptograhic solutions
 - Message Authentication Code (MAC) Secret Key
 - Digital Signatures Public Key
- Watermarking embeds Authentication Information in the file
 - no appended signature to handle
 - · everything fits into the host file format
- Creating and attacking the authentication information
 - remains a cryptological prolem
 - layered system (here Cox and I agree)
- It does not matter if the designer agrees
 - I, as an attacker, can use cryptology anyway

- Cryptograhic solutions
 - Message Authentication Code (MAC) Secret Key
 - Digital Signatures Public Key
- Watermarking embeds Authentication Information in the file
 - no appended signature to handle
 - everything fits into the host file format
- Creating and attacking the authentication information
 - · remains a cryptological prolem
 - layered system (here Cox and I agree)
- It does not matter if the designer agrees
 - I, as an attacker, can use cryptology anyway

- Cryptograhic solutions
 - Message Authentication Code (MAC) Secret Key
 - Digital Signatures Public Key
- Certificate of Authenticity (Signature or MAC)
 - ... appended to the message
 - does not fit into standard file formats
- Only Alice can produce a valid certificate
 - well-studied and trusted technology
 - mathematical security

- Cryptograhic solutions
 - Message Authentication Code (MAC) Secret Key
 - Digital Signatures Public Key
- Certificate of Authenticity (Signature or MAC)
 - ... appended to the message
 - does not fit into standard file formats
- Only Alice can produce a valid certificate
 - well-studied and trusted technology
 - mathematical security

- Cryptograhic solutions
 - Message Authentication Code (MAC) Secret Key
 - Digital Signatures Public Key
- Certificate of Authenticity (Signature or MAC)
 - ... appended to the message
 - does not fit into standard file formats
- Only Alice can produce a valid certificate
 - well-studied and trusted technology
 - mathematical security

- Cryptograhic solutions
 - Message Authentication Code (MAC) Secret Key
 - Digital Signatures Public Key
- Certificate of Authenticity (Signature or MAC)
 - ... appended to the message
 - does not fit into standard file formats
- Only Alice can produce a valid certificate
 - well-studied and trusted technology
 - mathematical security

Authentication Watermarking

- Authentication information is embedded in the file
 - no appended signature to handle
 - · everything fits into the host file format
- Some watermarking systems offer extra advantages
 - localisation of changes/errors
 - further analysis of modification processes
- Creating and attacking the authentication information
 - remains a cryptological prolem
 - layered system (here Cox and I agree)

Authentication Watermarking

- Authentication information is embedded in the file
 - no appended signature to handle
 - everything fits into the host file format
- Some watermarking systems offer extra advantages
 - localisation of changes/errors
 - further analysis of modification processes
- Creating and attacking the authentication information
 - remains a cryptological prolem
 - layered system (here Cox and I agree)

Authentication Watermarking

- Authentication information is embedded in the file
 - no appended signature to handle
 - everything fits into the host file format
- Some watermarking systems offer extra advantages
 - localisation of changes/errors
 - further analysis of modification processes
- Creating and attacking the authentication information
 - · remains a cryptological prolem
 - layered system (here Cox and I agree)

Outline

- Authentication and Watermarking
- Li-Yuan Authentication WM
- How to break it
- 4 How to fix it maybe
- Closure

- $M \times N$ 8-bit grayscale image image $\mathcal{I}(x, y)$
- Security parameter b
 - Discard the b least significant bits of each pixel
 - \rightarrow significant image S(x, y)
- Secret watermark image w
 - M × N matrix of b-bits per item (pixel)
 - A shorter key can be expanded using a secure PRNG
- Let a(x, y) denote the authentication information
 - b bits per pixel (to be computed)
- The watermarked image will be generated as

$$W(x,y) = 2^b S(x,y) + a(x,y),$$

- $M \times N$ 8-bit grayscale image image $\mathcal{I}(x, y)$
- Security parameter b
 - Discard the b least significant bits of each pixel
 - \rightarrow significant image S(x, y)
- Secret watermark image w
 - $M \times N$ matrix of b-bits per item (pixel)
 - A shorter key can be expanded using a secure PRNG
- Let a(x, y) denote the authentication information
 - b bits per pixel (to be computed)
- The watermarked image will be generated as

$$W(x,y) = 2^b S(x,y) + a(x,y),$$

- $M \times N$ 8-bit grayscale image image $\mathcal{I}(x, y)$
- Security parameter b
 - Discard the b least significant bits of each pixel
 - \rightarrow significant image S(x, y)
- Secret watermark image w
 - M × N matrix of b-bits per item (pixel)
 - A shorter key can be expanded using a secure PRNG
- Let a(x, y) denote the authentication information
 - b bits per pixel (to be computed)
- The watermarked image will be generated as

$$W(x,y) = 2^b S(x,y) + a(x,y),$$

- $M \times N$ 8-bit grayscale image image $\mathcal{I}(x, y)$
- Security parameter b
 - Discard the b least significant bits of each pixel
 - \rightarrow significant image S(x, y)
- Secret watermark image w
 - M × N matrix of b-bits per item (pixel)
 - A shorter key can be expanded using a secure PRNG
- Let a(x, y) denote the authentication information
 - b bits per pixel (to be computed)
- The watermarked image will be generated as

$$W(x,y) = 2^b S(x,y) + a(x,y)$$

- $M \times N$ 8-bit grayscale image image $\mathcal{I}(x, y)$
- Security parameter b
 - Discard the b least significant bits of each pixel
 - \rightarrow significant image S(x, y)
- Secret watermark image w
 - M × N matrix of b-bits per item (pixel)
 - A shorter key can be expanded using a secure PRNG
- Let a(x, y) denote the authentication information
 - b bits per pixel (to be computed)
- The watermarked image will be generated as

$$\mathcal{W}(x,y)=2^{b}\mathcal{S}(x,y)+a(x,y),$$

A non-cryptographic hash

Calculating the authentication information

- Main challenge: calculating a(x, y)
 - if Eve can calculate a(x, y) for a false image,
 - ... she has broken the scheme

For each pixel (x, y),

- Consider a $k \times k$ square region $N_k(x, y)$ around it
- A b-bit hash v(x, y) is calculated from
 - \bigcirc S on $N_k(x,y)$
 - 2 least significant bits of **w** on $N_k(x, y)$
- $a(x,y) = v(x,y) \oplus w(x,y)$ replace b LSB-s

A non-cryptographic hash

Calculating the authentication information

- Main challenge: calculating a(x, y)
 - if Eve can calculate a(x, y) for a false image,
 - ... she has broken the scheme

For each pixel (x, y),

- Consider a $k \times k$ square region $N_k(x, y)$ around it
- A b-bit hash v(x, y) is calculated from
 - \bigcirc S on $N_k(x,y)$
 - 2 least significant bits of **w** on $N_k(x, y)$
- $a(x,y) = v(x,y) \oplus w(x,y)$ replace b LSB-s

A non-cryptographic hash

Calculating the authentication information

- Main challenge: calculating a(x, y)
 - if Eve can calculate a(x, y) for a false image,
 - ... she has broken the scheme

For each pixel (x, y),

- Consider a $k \times k$ square region $N_k(x, y)$ around it
- A b-bit hash v(x, y) is calculated from
 - \bigcirc S on $N_k(x, y)$
 - 2 least significant bits of **w** on $N_k(x, y)$
- $a(x, y) = v(x, y) \oplus w(x, y)$ replace b LSB-s

Extraction and Authentication

- Extraction
 - v(x, y) is computed (hash of S)
 - a(x, y) is extracted directly (= $\mathcal{I} \mod 2^b$)
 - Extracted watermark $w'(x,y) = v(x,y) \oplus a(x,y)$
 - Secret watermark w(x, y) is known
- $w'(x, y) \neq w(x, y)$ indicates an error

Outline

- Authentication and Watermarking
- 2 Li-Yuan Authentication WM
- How to break it
- 4 How to fix it maybe
- Closure

The problem

- Each watermarked pixel (x, y) depend on 26 key bits
 - This includes 5×5 bits of $\kappa := w \mod 2$
 - And one extra bit w(x, y) 'encrypting' v(x, y)
- A key principle of cryptography is diffusion
 - Each output bit should depend on every key bit
- Dependence on 26 bits is insufficient
 - An exhaustive search is possible
 - work on 25 bits of κ at a time
- Proper Diffusion would prevent the attack

The problem

- Each watermarked pixel (x, y) depend on 26 key bits
 - This includes 5×5 bits of $\kappa := w \mod 2$
 - And one extra bit w(x, y) 'encrypting' v(x, y)
- A key principle of cryptography is diffusion
 - Each output bit should depend on every key bit
- Dependence on 26 bits is insufficient
 - An exhaustive search is possible
 - work on 25 bits of κ at a time
- Proper Diffusion would prevent the attack

The problem

- Each watermarked pixel (x, y) depend on 26 key bits
 - This includes 5×5 bits of $\kappa := w \mod 2$
 - And one extra bit w(x, y) 'encrypting' v(x, y)
- A key principle of cryptography is diffusion
 - Each output bit should depend on every key bit
- Dependence on 26 bits is insufficient
 - An exhaustive search is possible
 - work on 25 bits of κ at a time
- Proper Diffusion would prevent the attack

The problem

- Each watermarked pixel (x, y) depend on 26 key bits
 - This includes 5×5 bits of $\kappa := w \mod 2$
 - And one extra bit w(x, y) 'encrypting' v(x, y)
- A key principle of cryptography is diffusion
 - Each output bit should depend on every key bit
- Dependence on 26 bits is insufficient
 - An exhaustive search is possible
 - work on 25 bits of κ at a time
- Proper Diffusion would prevent the attack

Assumptions

- We need two known, watermarked images x₁, x₂
 - One image is not sufficient
 - More images give faster decoding
- We assume k = 5
 - We sketch improvements to be feasible for k > 5
 - ... but the details remain for future work
 - ... the improvements depend on image properties
- We assume *b* = 2
 - b > 2 makes the attack faster
 - b = 1 makes it slower, but additional images can compensate
 - (Note that Li and Yuan claim that increasing b increases security)

The idea

The first round

- Consider a 5 × 5 block at a time
- Exhaustive search : 2^{25} possible subkeys $\kappa | N_5(x,y)$
- For each tentative subkey $\hat{\kappa}$
 - Extract watermark $w'_i(x, y)$ (i = 1, 2) from \mathbf{x}_i
 - 2 Compare w'_1 and tentative key
 - $w'_1(x,y) \mod 2 \neq \hat{\kappa}(x,y)$: reject $\hat{\kappa}$
 - Ompare w'_1 and w'_2
 - $w'_1(x, y) \neq w'_2(x, y)$: reject $\hat{\kappa}$
- Three (3) bit comparisons are made
 - On average, one key in eight (23) pass the test

How to proceed

The rest of the idea

- Each round considers a new 5 × 5 block
 - ... overlapping with the first
- Number of possible keys increase at first
- Rounds 2-3 add five key pixels each
- Round 4 add only 1 (6 \times 6 = 36 pixels total)
- Rounds 5 and 7 add five pixels each
- Rounds 6, 8, and 9 add one pixel each
 - 7 × 7 = 49 pixels covered after Round 9
- Thereafter: expected number of tentative keys will decrease

Outline

- Authentication and Watermarking
- 2 Li-Yuan Authentication WM
- How to break it
- 4 How to fix it maybe
- 5 Closure

Strong cryptography

- Two problems
 - Short key: weak 'cryptography' at best
 - ... exploited by the basic attack
 - Insufficient diffusion : non-cryptographic
 - ... exploited by improvements (paper only)
- a(x, y) requires the properties of a MAC
 - Eve knows several watermarked images (with S and a)
 - Eve cannot produce a new image S' with matching authentication information (a').
- A proper MAC would prevent our attack
 - There are some works using MAC-s in authentication watermarking
 - ... and some works recognise the importance of cryptography, but use the wrong cryptographic properties.

Strong cryptography

- Two problems
 - Short key: weak 'cryptography' at best
 - ... exploited by the basic attack
 - Insufficient diffusion : non-cryptographic
 - ... exploited by improvements (paper only)
- a(x, y) requires the properties of a MAC
 - Eve knows several watermarked images (with S and a)
 - Eve cannot produce a new image S' with matching authentication information (a').
- A proper MAC would prevent our attack
 - There are some works using MAC-s in authentication watermarking
 - ... and some works recognise the importance of cryptography, but use the wrong cryptographic properties.

Strong cryptography

- Two problems
 - Short key: weak 'cryptography' at best
 - ... exploited by the basic attack
 - Insufficient diffusion : non-cryptographic
 - ... exploited by improvements (paper only)
- a(x, y) requires the properties of a MAC
 - Eve knows several watermarked images (with S and a)
 - Eve cannot produce a new image S' with matching authentication information (a').
- A proper MAC would prevent our attack
 - There are some works using MAC-s in authentication watermarking
 - ... and some works recognise the importance of cryptography, but use the wrong cryptographic properties.

The Design Parameters

- Decreasing b
 - Fewer keys are excluded in each round
 - But hash collisions become more frequent
- Increasing k
 - More keys to consider per round
 - However, if a monochrome region can be found in the image,
 - Only k^2 (not 2^{k^2}) keys have to be considered
 - By exploiting the simple additive structure of S(x, y)
 - And increasing k will have marginal effect...

Outline

- Authentication and Watermarking
- 2 Li-Yuan Authentication WM
- How to break it
- 4 How to fix it maybe
- Closure

Conclusion

- Key-Recovery Attack Algorithm on Li and Yuan's Scheme
- Cryptological principles apply
 - If the designer ignores them,
 - then the attacker can exploit them
- Open problem
 - Implement and test the algorithm
 - How secure are other watermarking systems?

Conclusion

- Key-Recovery Attack Algorithm on Li and Yuan's Scheme
- Cryptological principles apply
 - If the designer ignores them,
 - then the attacker can exploit them
- Open problem
 - Implement and test the algorithm
 - How secure are other watermarking systems?

