Image Forensics and Steganalysis

(Hans) Georg Schaathun

Department of Computing University of Surrey

26 June 2009

- Examples
 - Tampering
 - Different Security Scenarioes
- Steganography and Steganalysis
 - Steganography
 - JPEG and F5
 - The Markov Based Model
 - Double Compression
 - Conditional Probability Features
- Our group
- Conclusion

Outline

- Examples
 - Tampering
 - Different Security Scenarioes
- Steganography and Steganalysis
- Our group
- 4 Conclusion

Outline

- Examples
 - Tampering
 - Different Security Scenarioes
- Steganography and Steganalysis
- Our group
- 4 Conclusion

Picture from AFP.

- Some rockets are the product of

- Picture from AFP.
- One of the rockets really fired
- Some rockets are the product of PhotoShop...
- The image was retracted after publication

- Picture from AFP.
- One of the rockets really fired
- Some rockets are the product of PhotoShop...
- The image was retracted after publication

- Picture from AFP.
- One of the rockets really fired
- Some rockets are the product of PhotoShop...
- The image was retracted after publication

Crime Scene Photography

- What did the crime scene look like?
 - Photography is vital evidence
- Photography can be altered...
 - What can we prove?

Crime Scene Photography

- What did the crime scene look like?
 - Photography is vital evidence
- Photography can be altered...
 - What can we prove?

Who were actually there?

- Former Culture Secretary James Purnell
- Late for the meeting.
 - Arrived after three other MPs had to leave.
- James Purnell was added to the picture
- (BBC News 28 September 2007)

Outline

- Examples
 - Tampering
 - Different Security Scenarioes
- Steganography and Steganalysis
- Our group
- 4 Conclusion

Is the photo real?

- Does it show reality?
- Or has its author exercises artistic licence?
 - tampering with evidence
 - adding grandeur to a story
 - computer generated images
- For example
 - Merging images
 - Erasing details or objects

Where does the photo come from?

- Objective: add credibility to claims
- All information about the image is potentially useful...
- Which camera took the image?
- Time of day, time of year, etc.
- Subsequent image processing
 - contrast, compression, brightness, etc.

Where does the photo come from?

- Objective: add credibility to claims
- All information about the image is potentially useful...
- Which camera took the image?
- Time of day, time of year, etc.
- Subsequent image processing
 - contrast, compression, brightness, etc.

Is there more than meets the eye?

- Additional information hidden in the image?
 - known as steganography

Three important questions

- Is the photo real?
- Where does the photo come from?
- Is there more than meets the eye?

User scenarios

- News agency, news paper, etc.
 - can we trust images from the public?
 - they can get thousands of images in a day
- Forensics and Court of Law
 - what can we prove?
 - what is the truth?
 - is the image real or synthetic?
- Intelligence services
 - is there secret communications hidden in the image?

Outline

- Examples
- Steganography and Steganalysis
 - Steganography
 - JPEG and F5
 - The Markov Based Model
 - Double Compression
 - Conditional Probability Features
- Our group
- Conclusion

Outline

- Examples
- Steganography and Steganalysis
 - Steganography
 - JPEG and F5
 - The Markov Based Model
 - Double Compression
 - Conditional Probability Features
- Our group
- Conclusion

Simmons Crypto'83

William the Warden

Simmons Crypto'83

William the Warden

The vision

Bob the Banker

The data hiding system

The pure stego-system

The pure stego-system

• Security depends on the confidentiality of the algorithm.

- The key k is shared confidentially by Alice and Bob.
 - Gives Bob an edge over Eve.
- Without the key, the stego-text is indistinguishable from any other cover text

- The key k is shared confidentially by Alice and Bob.
 - Gives Bob an edge over Eve.
- Without the key, the stego-text is indistinguishable from any other cover text

- The key k is shared confidentially by Alice and Bob.
 - Gives Bob an edge over Eve.
- Without the key, the stego-text is indistinguishable from any other cover text

- The cover text is a red herring
- It has no value at the receiver

Significance of the Cover Image

- The cover text is a red herring
- It has no value at the receiver

Watermarking System

- Related to watermarking where the cover image is essential.
- Watermarking ties the message to the cover.
 - The attacker tries to separate the two.

Watermarking System

Watermarking System

Definitions

The tools

Definition (Stego-system)

A system which allows Alice and Bob to communicate secretly without Eve knowing that any secret communication is taking place.

Definition (Steganography)

The study of (and art of developing) stego-systems.

Definition (Steganalysis)

The art of detecting whether secret communications is taking place or not.

Definitions

The tools

Definition (Stego-system)

A system which allows Alice and Bob to communicate secretly without Eve knowing that any secret communication is taking place.

Definition (Steganography)

The study of (and art of developing) stego-systems.

Definition (Steganalysis)

The art of detecting whether secret communications is taking place or not.

Definitions

The tools

Definition (Stego-system)

A system which allows Alice and Bob to communicate secretly without Eve knowing that any secret communication is taking place.

Definition (Steganography)

The study of (and art of developing) stego-systems.

Definition (Steganalysis)

The art of detecting whether secret communications is taking place or not.

Steganalysis

Using Machine Learning

- Most recent steganalysis systems use Machine Learning
 - or related statistical techniques
- Most often a two-class SVM is used (natural vs. steganogram)
- Extract features (statistics) from the image
 - Multi-dimensional floating point vector
- Train the system
 - Input two ensembles of feature vectors
 - The system will estimate a model
- Testing
 - Input the estimated model + Images from each class
 - Output classification decisions Estimate accuracy
- Real use
 - Input: model; feature vector from a suspicious image

Outline

- Examples
- Steganography and Steganalysis
 - Steganography
 - JPEG and F5
 - The Markov Based Model
 - Double Compression
 - Conditional Probability Features
- Our group
- Conclusion

JPEG images

JPEG images

JPEG images

JPEG Steganography

- Many stego-algorithms work on the JPEG Array
 - Integer matrix
- E.g. Jsteg
 - Ignore +1 and 0 coefficients
 - Embed in the least significant bit of each coefficient
 - Extract by taking c mod 2

The F5 Algorithm

by Andrea Westfeld

- Better preservation of image statistics
- JPEG coefficient magnitudes are always decreased
- Matrix coding (source coding) is used
 - · coding to match the cover
 - minimise the number of modifications

Typical JPEG Steganography

- Modulate information on the cover
 - ±1 changes to coefficients
- Independent modifications
 - Independence of the cover
 - Independence of individual coefficients
- This is the problem of steganography
 - Image coefficients are not independent
 - The modifications become detectible noise

Outline

- Examples
- Steganography and Steganalysis
 - Steganography
 - JPEG and F5
 - The Markov Based Model
 - Double Compression
 - Conditional Probability Features
- Our group
- Conclusion

The Markov Based Model - Overview

Yun Q Shi et al

- Consider the absolute value of the JPEG array
- Difference matrix differences between adjacent coefficients
- Model the difference matrix
 - First-order Markov model
- Estimate a Transition Probability Matrix
 - which forms our features

The difference array

- $F_{v}(i,j) = |J_{i,j}| |F_{i+1,j}|$
- To reduce complexity, the difference array is capped at $\pm T$
 - Large (small) values are reduced (increased) to the capping value.

The other three difference arrays

Horizontal, and major and minor diagonal

Transition Probability Matrix

- For $s, t \in \{-T, -T + 1, ..., T 1, T\}$, we estimate
 - $M_{s,t}^{v} = P(F_{v}(i+1,j) = s|F_{v}(i,j))$
 - $M_{s,t}^h = P(F_h(i,j+1) = s|F_h(i,j))$
 - $M_{s,t}^d = P(F_d(i+1,j+1) = s|F_d(i,j))$
 - $M_{s,t}^{m} = P(F_m(i,j+1) = s|F_m(i+1,j))$
- This gives four matrices
 - $M^{x} = [M_{s,t}^{x}]$
- $4(2T+1)^2$ features
 - Shi et al suggested T = 4 for 323 features
- Performance around 90%-98% accuracy

Outline

- Examples
- Steganography and Steganalysis
 - Steganography
 - JPEG and F5
 - The Markov Based Model
 - Double Compression
 - Conditional Probability Features
- Our group
- Conclusion

- JPEG based stego-algorithms should work on the JPEG array
- This is what F5 (and Jsteg) Software actually do:
- Load and Decompress the Image
 - Internal Spatial Representation
 - Compression Parameters are discarded
- Compression and Embedding as an integrated process
 - Compression implemented by tweeking existing compression routines
 - Usually using default parameters
- Save the comressed image

- JPEG based stego-algorithms should work on the JPEG array
- This is what F5 (and Jsteg) Software actually do:
- Load and Decompress the Image
 - Internal Spatial Representation
 - Compression Parameters are discarded
- Compression and Embedding as an integrated process
 - Compression implemented by tweeking existing compression routines
 - Usually using default parameters
- Save the comressed image

- JPEG based stego-algorithms should work on the JPEG array
- This is what F5 (and Jsteg) Software actually do:
- Load and Decompress the Image
 - Internal Spatial Representation
 - Compression Parameters are discarded
- Compression and Embedding as an integrated process
 - Compression implemented by tweeking existing compression routines
 - Usually using default parameters
- Save the comressed image

- JPEG based stego-algorithms should work on the JPEG array
- This is what F5 (and Jsteg) Software actually do:
- Load and Decompress the Image
 - Internal Spatial Representation
 - Compression Parameters are discarded
- Compression and Embedding as an integrated process
 - Compression implemented by tweeking existing compression routines
 - Usually using default parameters
- Save the comressed image

- JPEG based stego-algorithms should work on the JPEG array
- This is what F5 (and Jsteg) Software actually do:
- Load and Decompress the Image
 - Internal Spatial Representation
 - Compression Parameters are discarded
- Compression and Embedding as an integrated process
 - Compression implemented by tweeking existing compression routines
 - Usually using default parameters
- Save the comressed image

Double Compression

- The F5 software recompresses the image
 - Usually using a different compression factor
 - Known as Double Compression
- This normally causes artifacts
- Typical Steganalysis classifiers
 - Compare Clean images against F5 processed images
 - What is detected?
 - Double Compression or Steganography?

Double Compression

- The F5 software recompresses the image
 - Usually using a different compression factor
 - Known as Double Compression
- This normally causes artifacts
- Typical Steganalysis classifiers
 - Compare Clean images against F5 processed images
 - What is detected?
 - Double Compression or Steganography?

Double Compression

- The F5 software recompresses the image
 - Usually using a different compression factor
 - Known as Double Compression
- This normally causes artifacts
- Typical Steganalysis classifiers
 - Compare Clean images against F5 processed images
 - What is detected?
 - Double Compression or Steganography?

Alternative Experiment

- New training set
 - Steganograms from F5 (with a hidden message)
 - Over images processed by F5 without a message
- Thus both of classes are doubly compressed
- Our classifier will have to work on the embedding only

1st vs. 2nd Order Markov Models

Performance

Ignoring Double Compression

	Message length (bytes)			
	618	1848	4096	
1st Order	89.5%	93.5%	98.0%	
2nd Order	99.1%	99.1%	98.6%	

F5 vs. doubly compressed (clean) images

	Messa	ge length	(bytes)
	618	1848	4096
1st Order	50.2%	84.3%	97.9%
2nd Order	50.0%	55.6%	70.6%

1st vs. 2nd Order Markov Models

Performance

Ignoring Double Compression

	Message length (bytes)				
	618	1848	4096		
1st Order	89.5%	93.5%	98.0%		
2nd Order	99.1%	99.1%	98.6%		

F5 vs. doubly compressed (clean) images

	Message length (bytes)				
	618	1848	4096		
1st Order	50.2%	84.3%	97.9%		
2nd Order	50.0%	55.6%	70.6%		

Outline

- Examples
- Steganography and Steganalysis
 - Steganography
 - JPEG and F5
 - The Markov Based Model
 - Double Compression
 - Conditional Probability Features
- Our group
- Conclusion

Complexity

- Shi et al's technique uses 323 features
- Computationally costly, to extract and to train
- We have proposed a simpler set
 - achieving similar performance

Basic ideas

- The Markov Model is flawed
 - probability distribution of each coefficient is
 - determined by preceeding coefficients
 - independent of position
 - it should depend on the frequency (position in a subblock)
- The transition probability matrix is too fine-grained
 - too many features to compute

The coefficients considered

	X _h	Уh	Z _h		
X _V	X _d				
y _v		Уd			
Z_V			Z _d		

The CP Features

Definitions

- Triplet (x, y, z) as in figure
- Three posterior events

•
$$A_1 : y > z$$
; $A_2 : y = z$; $A_3 : y < z$

- Three prior events
 - $B_1 : x > y$; $B_2 : x = y$; $B_3 : x < y$
- Nine features per triplet (x, y, z)
 - $P(A_i|B_i)$ fro i, j = 1, 2, 3
- 27 features in total
 - A 54-feature variant (six triplets) was less effective

Performance

CP Features

- Computation Markov Model based technique in parenthesis
 - Training 770ms (150ms) on 2480 images
 - Classification 0.2ms (same) per image
 - Feature Extraction 114ms (13s) per image
- Accuracy (large message, 4kB)
 - 97.2% for both CP and Markov Model
 - 95% confidence interval is (95.3%, 99.2%)

Performance

CP Features

- Computation Markov Model based technique in parenthesis
 - Training 770ms (150ms) on 2480 images
 - Classification 0.2ms (same) per image
 - Feature Extraction 114ms (13s) per image
- Accuracy (large message, 4kB)
 - 97.2% for both CP and Markov Model
 - 95% confidence interval is (95.3%, 99.2%)

Outline

- Examples
- Steganography and Steganalysis
- Our group
- 4 Conclusion

Steganalysis and Image Forensics

and Machine Learning

- Steganalysis
 - Development of Scientific Methodology
 - New feature sets
- sister team on Image Forensics
- sister group in Biologically Inspired Methods

Coding Theory

Applications in Data Hiding

- Deletion/Insertion Correction
 - for use in Watermarking
 - Geometric Distortions
- Wet Paper and Dirty Paper Coding
 - Distortion Minimisation in Watermarking and Steganography
- Construction/Non-Existence of Codes

Information Security

- Security in Contact-Less Payment Systems
 - are they sufficiently secure
- sister group in E-voting

Outline

- Examples
- Steganography and Steganalysis
- Our group
- 4 Conclusion

Next project

- Information Forensics is a booming area
 - Image Forensics in particular
 - The methods and methodology are largely shared with Steganalysis
- Is there room for collaboration?
 - Machine Learning
 - Sound methodology

