Camera Calibration

Linear Calibration and Intrinsic Camera Properties

Hans Georg Schaathun

NTNU, Noregs Teknisk-Naturvitskaplege Universitet

September 2023

Point $P$ has co-ordinates

  • $\vec{x}_w=(x_w,y_w,z_w)$ in the world frame
  • $\vec{X}=(X,Y,Z)$ in the camera frame
  • $\vec{x}=(x,y)$ in the image plane
  • $(i,j)$ in the pixmap

Seek mappings $$\vec{x}_w\mapsto \vec{X}\mapsto \vec{x}\mapsto (i,j)$$

World frame and camera frame

Change of basis$$\mathbf{X} = R\mathbf{x}_w + T_{O_w} \in\mathbb{R}^3$$
where$R = \begin{bmatrix} \mathbf{e}_{w,1} \mathbf{e}_{w,2} \mathbf{e}_{w,3} \end{bmatrix}$
or with homogeneous co-ordinates$$\tilde{\mathbf{X}} = \begin{bmatrix} R & T_{O_w} \\ 0 & 1 \end{bmatrix}\cdot \tilde{\mathbf{x}}_w$$

Projection

ideal perspective$$\mathbf{x} = \begin{bmatrix}x\\y\end{bmatrix} = \frac fZ\begin{bmatrix}X\\Y\end{bmatrix}$$
homogeneous $$ Z \begin{bmatrix}x\\y\\1\end{bmatrix} = \begin{bmatrix}f & 0 & 0 & 0 \\0 & f & 0 & 0 & \\0 & 0 & 1 & 0 \end{bmatrix} \cdot \begin{bmatrix}X\\Y\\Z\\1\end{bmatrix}$$
$Z$ is unknown. Write $\lambda (=Z)$ $$ \lambda \begin{bmatrix}x\\y\\1\end{bmatrix} = \begin{bmatrix}f & 0 & 0 & 0 \\0 & f & 0 & 0 \\0 & 0 & 1 & 0 \end{bmatrix} \cdot \begin{bmatrix}X\\Y\\Z\\1\end{bmatrix}$$

Ideal Camera Projection

$$ \lambda \begin{bmatrix}x\\y\\1\end{bmatrix} $$$$ = $$$$\begin{bmatrix}f & 0 & 0 \\0 & f & 0 \\0 & 0 & 1 \end{bmatrix}$$$$\cdot$$$$\begin{bmatrix}1 & 0 & 0 & 0 \\0 & 1 & 0 & 0 \\0 & 0 & 1 & 0\end{bmatrix} $$$$\cdot$$$$ \begin{bmatrix}R & T \\0 & 1\end{bmatrix}$$$$\cdot$$$$\begin{bmatrix}X\\Y\\Z\\1\end{bmatrix}$$
$$ \lambda \textbf{x} $$$$ = $$$$K_f$$$$\cdot$$$$\Pi_0$$$$\cdot$$$$g$$$$\cdot$$$$\mathbf{X}_0$$

From metres to pixels

pixels per metric unit $s_x\times s_y$
axes scaled differently$$\begin{bmatrix} x_s\\y_s\end{bmatrix} = \begin{bmatrix} s_x & 0\\ 0 & s_y\end{bmatrix} \cdot \begin{bmatrix} x\\y\end{bmatrix} $$
translate the origin$$\begin{align}i &= x_s + o_x \\ j &= y_s + o_y\end{align} $$
homogeneous co-ordinates$$\begin{bmatrix} i\\j\end{bmatrix} = \begin{bmatrix} s_x & 0 & o_x \\ 0 & s_y & o_y \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x\\y\\1\end{bmatrix} $$

non-rectangular grid

$$\begin{bmatrix} i\\j\\1\end{bmatrix} = \begin{bmatrix} s_x & s_\theta & o_x \\ 0 & s_y & o_y \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x\\y\\1\end{bmatrix} $$

Camera Intrinsic Parameters

$$ \lambda \begin{bmatrix}x\\y\\1\end{bmatrix} $$$$ = $$$$\begin{bmatrix} s_x & s_\theta & o_x \\ 0 & s_y & o_y \\ 0 & 0 & 1 \end{bmatrix}$$$$\cdot$$$$\begin{bmatrix}f & 0 & 0 \\0 & f & 0 \\0 & 0 & 1 \end{bmatrix}$$$$\cdot$$$$\begin{bmatrix}1 & 0 & 0 & 0 \\0 & 1 & 0 & 0 \\0 & 0 & 1 & 0\end{bmatrix} $$$$\cdot$$$$\begin{bmatrix}X\\Y\\Z\\1\end{bmatrix}$$
$$ \lambda \textbf{x} $$$$ = $$$$K_s$$$$\cdot$$$$K_f$$$$\cdot$$$$\Pi_0$$$$\cdot$$$$\mathbf{X}_0$$
Camera Intrinsic Parameter Matrix$$K=K_sK_f= \begin{bmatrix} fs_x & fs_\theta & o_x \\ 0 & fs_y & o_y \\ 0 & 0 & 1 \end{bmatrix}$$