Revision 9eb57762ab86cd2f8e693402573865444bd62ccd (click the page title to view the current version)

Lecture: Distorted Space

Distorted Space

What is a distorted space?

  1. Consider a pixmap image with pixels \(1\times2\) mm. What is the distance from origo to the points \((0,10)\), \((10,0)\), and \((\sqrt{50},\sqrt{50})\approx(7,7)\)?
  2. \(\psi: \mathbb{R}^3 \to \mathbb{R}^3\), \(\psi: \mathbb{X}\mapsto \mathbb{X}' = K\mathbb{X}\)
  3. Redifining the Inner Product
    • \(\langle\psi^{-1}(u),\psi^{-1}(v)\rangle = u^TK^{-T}K^{-1}v =\langle u,v\rangle_{K^{-T}K^{-1}} =\langle u,v\rangle_{S}\)
    • where \(S=K^{-T}K^{-1}\)
  4. Norm \(||u||_S=\sqrt{\langle u,u\rangle}\)
  5. This gives rise to a distorted space
    • angles are different
    • norms are different

3D Motion in Distorted Space

  1. Movement in canonical space: \(X = RX_0+T\)
  2. Co-ordinates in uncalibrated camera frame
    • before: \(X_0' = KX_0\)
    • after: \(X' = KX = KRX_0 + KT = KRK^{-1}X_0' + T'\)
    • where \(T'=KT\)
  3. Thus the movement in distorted (uncalibrated) space is \((R',T') = (KRK^{-1},KT)\)

Conjugate Matrix Group

  1. The set of all Euclidean motions: \(\mathsf{SE}(3)=\{(R,T)|R\in\mathsf{SO}(3), T\in\mathbb{R}^3\}\)
  2. Conjugate of \(\mathsf{SE}(3)\) \[G' = \bigg\{ g' = \begin{bmatrix} KRK^{-1} & T'\\0&1\end{bmatrix} \bigg|R\in\mathsf{SO}(3), T\in\mathbb{R}^3\bigg\}\]
  3. Note commutative diagram in Fig 6.3 in the textbook

Uncalibrated Epipolar Geometry

Two views by the same camera. This gives one and the same calibration matrix \(K\) for both views.