Revision 8ea97d2677e61f5062f45eebec15248b0b04e630 (click the page title to view the current version)

Representations of 3D Motion

Representation of Rotations

Consider what happens when an object rotates continuously over time, i.e. the rotational matrix is a function \(R(t)\) of time.

The derivative

  1. Rotation is represented by an orthogonal matrix \(R\) \[R(t)\cdot R^T(t)=I\]
  2. Implicit derivation \[\dot R(t)\cdot R^T(t)+R(t)\cdot\dot R^T(t)=I\]
  3. by transposing the product and moving one term across, we have \[\dot R(t)\cdot R^T(t) = -(\dot R(t)\cdot R^T(t))^T\]
  4. This is a skew-symmetric matrix, hence \[\exists \vec{\omega}\in\mathbb{R}^3, \text{s.t.} \dot R(t)\cdot R^T(t) = \hat\omega(t)\]
  5. Multiply by \(R(t)\) to get \[\dot R(t) = \hat\omega(t)\cdot R(t)\]
  6. If \(R(t_0)=I\) as an initial condition, then \(\dot R(t)=\hat\omega(t)\)

Note \(so(3)\) is the space of all skew-symmetric matrices.

  1. First Order approximation \[ R(t_0+dt)\approx I + \hat\omega(t_0)dt\]

The differential equation

Let \(x(t)\) be a point rotated over time.

Assume that \(\omega\) is constant.

  1. ODE: \[\dot x(t) = \hat\omega x(t), \quad x(t)\in\mathbb{R}^3\]
  2. Solution: \[x(t) = e^{\hat\omega t} x(0)\]
  3. where \[e^{\hat\omega t} = I + \sum_{i=1}^\infty \frac{(\hat\omega )^i}{i!}\]
  4. The rotational matrix \[R(t)=e^{\hat\omega t}\] signifies a rotation around the axis \(\omega\) by \(t\) radians.

\[\exp : \mathrm{so}(3)\to\mathrm{SO}(3); \hat\omega\mapsto e^{\hat\omega}\]

This is a map from a Lie algebra to a Lie group.

For any \(R\), such an \(\hat\omega\) can be found, not necessarily unique.

Rotation is obviously periodic. A rotation by \(2\pi\) is back to start.

Note Only three degrees of freedom.

Logarithm

Theorem 2.8 page 27 in the textbook

\[ R = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} = \exp(\hat\omega) \] where \[ \DeclareMathOperator{\tr}{trace} ||\omega|| = \cos^{-1}\big(\frac{\tr(R)-1}2\big) \] and

\[ \frac{\omega}{||\omega||} = \frac1{2\sin(||\omega||)} \begin{bmatrix} r_{32}-r_{23}\\ r_{13}-r_{31}\\ r_{21}-r_{12} \end{bmatrix} \]