Revision 9eb57762ab86cd2f8e693402573865444bd62ccd (click the page title to view the current version)

Distorted Lecture

Changes from 9eb57762ab86cd2f8e693402573865444bd62ccd to fd2f7c9adf45ff0ffb14efada9588b9690093f88

---
title: Lecture: Distorted Space
categories: lecture
---

# Distorted Space

## What is a distorted space?

1.  Consider a pixmap image with pixels $1\times2$ mm.
    What is the distance from origo to the points $(0,10)$, $(10,0)$,
    and $(\sqrt{50},\sqrt{50})\approx(7,7)$?
2.  $\psi: \mathbb{R}^3 \to \mathbb{R}^3$, 
    $\psi: \mathbb{X}\mapsto \mathbb{X}' = K\mathbb{X}$
2.  Redifining the Inner Product
    - $\langle\psi^{-1}(u),\psi^{-1}(v)\rangle
      = u^TK^{-T}K^{-1}v
      =\langle u,v\rangle_{K^{-T}K^{-1}}
      =\langle u,v\rangle_{S}$
    - where $S=K^{-T}K^{-1}$
4.  Norm $||u||_S=\sqrt{\langle u,u\rangle}$
4.  This gives rise to a **distorted space**
    - angles are different
    - norms are different
    
## 3D Motion in Distorted Space

1.  Movement in canonical space: $X = RX_0+T$
2.  Co-ordinates in uncalibrated camera frame
    - before: $X_0' = KX_0$
    - after: $X' = KX = KRX_0 + KT = KRK^{-1}X_0' + T'$
    - where $T'=KT$
3.  Thus the movement in distorted (uncalibrated) space is
    $(R',T') = (KRK^{-1},KT)$

## Conjugate Matrix Group

1.  The set of all Euclidean motions: 
    $\mathsf{SE}(3)=\{(R,T)|R\in\mathsf{SO}(3), T\in\mathbb{R}^3\}$
2.  Conjugate of $\mathsf{SE}(3)$ 
    $$G' = \bigg\{ g' =  \begin{bmatrix} KRK^{-1} & T'\\0&1\end{bmatrix} 
    \bigg|R\in\mathsf{SO}(3), T\in\mathbb{R}^3\bigg\}$$
3.  *Note commutative diagram in Fig 6.3 in the textbook*

## Image Formation


1.  Calibrated (5.1)  $\lambda x = \Pi_0X$
1.  Uncalibrated (6.1)  $\lambda x' = K\Pi_0gX_0$
    - $g$ is camera pose
    - $K$ is camera calibration matrix
    - $\Pi_0$ is the projection (as before)
2.  $\lambda x' = KRX_0 + KT$
    - **abuse of notation!** we switch between homogeneous 
      and non-homogeneous co-ordinates
4.  $\lambda x' = KRK^{-1}KX_0 + KT$
5.  Rewriting in uncalibrated co-ordinates:
    - $\lambda x'=KRK^{-1}X'_0 + T' = \Pi_0g'X_0'$
 

# Uncalibrated Epipolar Geometry

Two views by the same camera.
This gives one and the same calibration matrix $K$ for both views.